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Abstract— Facial Action Unit (AU) detection is an important
task to enable the emotion recognition from facial movements.
In this paper, we propose a novel algorithm which utilizes
identity-labeled face images to tackle the identity-based intra-
class variation of AU detection that the appearances of the
same AU vary significantly among different subjects, which
makes existing methods generate low performance under cross-
domain scenarios in case that the training and test datasets
are dissimilar. The proposed method is based on network
cascades consisting of two sub-tasks, face clustering and AU
detection. The face clustering network, trained from a large
dataset containing numerous identity-annotated face images, is
designed to learn a transformation to extract identity-dependent
image features, which are used to predict AU labels in the
second network. The cascades are jointly trained by AU- and
identity-annotated datasets that contain numerous subjects to
improve the method’s applicability. Experimental results show
that the proposed method achieves state-of-the-art AU detection
performance on benchmark datasets BP4D, UNBC-McMaster,
and DISFA.

I. INTRODUCTION

Facial expressions are important non-verbal signals con-
veying people’s emotional states and intentions. Psycho-
logical studies show that emotion signals only occur at
a small number of face regions such as the nose, eyes,
and mouth [1]. In order to systematically describe facial
expressions, psychologists devised Facial Action Coding
Systems [2], providing the labels of taxonomized facial
muscle movements. With the advance of computer vision,
the system is widely used to describe a person’s emotions
by observing one’s facial appearance.

Based on different descriptive frameworks, existing recog-
nition methods for facial expressions are categorized into
two approaches: primary-emotion-based and AU-based. The
former [3], [4] aims to recognize the overall emotional
expressions shown on subjects’ faces, usually categorized
into 6 to 8 classes [5], as they are common to observe and
simple to describe. As a result, emotion-annotated datasets
are usually rich of subjects and images, serving methods
in this approach, which require numerous training data to
extract effective facial features from face images to directly
predict the target emotion labels. However, the number of
primary emotions used in those dataset are limited, far
less than the overall emotions people can express because
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emotional expressions are hard to be precisely classified due
to their tiny visual changes. If the number increases, the
labels of emotional expressions subjectively recognized by
different annotators will lead to a higher level of ambiguity
and result in low performance of most recognition methods.

Facial action units (AUs) are the enhanced representation
of facial expressions in terms of the accuracy and flexi-
bility, in particular for real-world expressions triggered by
mixed emotions such as happy and surprised or angry and
sad [6], [7]. Numerous AU detection methods have been
proposed in the literature. Among them, one challenge lies
in compiling AU-annotated facial expression datasets, which
requires well-trained annotators because AUs’ fine-grained
appearances are uneasy to recognize. In general, it takes six
months to train a qualified annotator, and the annotator needs
at least one hour to annotate a one-minute video clip [8]
because multiple AUs often occur simultaneously on a frame.

Compared with primary-emotion-labeled datasets, AU-
labeled datasets are smaller in terms of numbers of both
subjects and images, which leaves the performance of cross-
domain scenarios still an open question. In this paper, we
propose an AU detection method achieving good perfor-
mance under both within- and cross-dataset scenarios.

The proposed method is based on convolutional neural
networks (CNNs), which have been shown to achieve state-
of-the-art performance on many computer vision problems,
such as object recognition [9], pose estimation [10], and
face verification [11]. One of CNNs’ advantages lies in its
nonlinear architecture, which is very successful to extract
effective features among highly various images. With suf-
ficient data and efficient machines, CNNs have become a
powerful tool to tackle many long-standing recognition and
classification problems. For the facial expression recognition
(FER) problem, we observe two challenges still unsolved.
First, caused by diverse races, genders, and ages, subjects’
appearance difference can easily and significantly exceed
the change brought by facial expressions. For example,
wrinkles on a subject’s forehead may mean surprise if the
subject is young, but neutral if the subject is old due to
their natural existence. Some facial hairstyles may hide lips,
chins and jaws, and lead to incorrect expression predictions.
Second, compared with large face image datasets such as
CelebA [12], the sample numbers and subject diversity
of existing AU-annotated datasets are much smaller. For
example, the widely used AU-annotated datasets UNBC-
McMaster [13], DISFA [14], and BP4D [15] cover only
25, 27, and 41 subjects respectively. With a few subjects,

Authorized licensed use limited to: National Taiwan University. Downloaded on May 29,2023 at 07:53:18 UTC from IEEE Xplore. Restrictions apply.



it is questionable how effectively an AU-detection algorithm
can be trained and widely applied, especially for a cross-
domain scenario where test subjects are unlike the training
ones because the used model may be insufficiently trained.

For the first challenge, the fine-grained appearance de-
tection, we propose multi-task network cascades with a
specialized task of face clustering to reduce individual bias
using translation transformation in the feature space [16].
For the second challenge, the shortage of a large number of
subjects, we exploit subject-rich non-FER face datasets and
integrate them with AU-annotated datasets to improve the
performance, especially for cross-domain scenarios.

To sum up, we propose the novel method named Iden-
Net that achieves state-of-the-art performance under cross-
domain scenarios, and its novelty is twofold. First, we
propose a novel process to tackle individual differences using
auxiliary identity-labeled training images by applying trans-
lation transformation in the learned feature space. Second, to
realize the idea, we adopt the architecture of CNN cascades
containing two separate tasks for identity-dependent feature
extraction in one task and identity subtraction along with AU
detection in another task.

II. RELATED WORK

The proposed method—exploiting identity-labeled facial
images to support AU recognition—is related to several fields
of studies in computer vision. Thus we categorize related
methods into a few groups by the ways they deal with
the problem and discuss the relationship between our and
existing methods, especially for the use of face images.

Facial Action Unit Recognition. Facial action unit recogni-
tion addresses the limitations of prototypic facial expressions
that human emotions and intentions are more often communi-
cated by changes in one or a few discrete facial features [17].
Facial action coding systems decompose prototypic facial
expressions into detailed facial muscle movements and result
in a more challenging problem to detect tiny changes on
faces. Like other studies in computer vision, using effective
image features is essential to improve recognition perfor-
mance. Many state-of-the-art methods [18], [19] use learned
CNN features to replace hand-crafted features [20], [21] to
generate more distinguishing representation.

In addition to extract distinguishing features, another im-
portant issue of AU detection is how to handle the inter-
and intra-class variations from extracted features. Based on
the observation that human faces are structurally similar and
their discriminative characteristics can be extracted through
group sparsity, the method JPML (abbreviated from Joint
Patch and Multi-label Learning) [21] develops a mapping
function through a sparse dictionary to predict AU labels
from facial regions. Inspired by the success of deep learning
in computer vision, a CNN-based method DRML (Deep
Region and Multi-label Learning) [18] replaces the sparse
dictionary used in JPML with an end-to-end CNN model and
generates better performance due to the high-performance
feature extractors embedded in CNNs. DRML introduces a

region layer which splits the input face image into a uniform
grid and extracts features from individual block regions.
However, there is an obvious limitation in its presumption.
Due to the wide range of face shapes, faces are unable to be
fully aligned, and thus the split grid blocks inherently cover
inconsistent facial regions. To mitigate this problem, another
CNN-based method ROINet [22] crops regions of interest by
detecting facial landmarks at first.

Similar to our method, Zhang et al. [23] also utilizes
identity-annotated datasets to enrich face variants in AU
detection learning process. They propose an Adversarial
Training Framework (ATF) that confuses CNNs in classi-
fying identities to produce subject-invariant features. From
the difference perspective, our method incorporate the ex-
isting face clustering CNNs with good performance on
discriminating identities to construct robust features for AU
detection. Compared with ATF, IdenNet is easier to improve
by replacing with a better face clustering model.

All the four methods belongs to inductive learning and
learn a mapping function from an image to AU labels, which
is intuitive and straightforward. However, they only report
their performance under the within-dataset scenario, i.e. learn
from and test on the same dataset, and there is a question
about their performance under the cross-dataset scenario. We
address this question in this paper, and find the proposed
method outperforms existing methods under both scenarios
because the proposed method exploits a large number of
identity-labeled images to reduce subjects’ attribute bias.

Other than inductive learning, several existing methods
take another learning approach called transductive learning
to recognize facial AUs, by which an test image’s AU labels
are inferred directly from examples, rather than from a pre-
trained mapping function. Selective Transfer Machine [24]
trains personalized SVM (Support Vector Machine) classi-
fiers for individual subjects. Given a test image, the method
selects a group of example images based on the similarity
to the test image, and creates a personal classifier using the
weighted example images. Since this method minimizes the
mismatch between training and test samples by disregarding
dissimilar training samples, it outperforms the baseline of a
single generic classifier evenly learned from all training data.
However, the method has to re-weigh all training data for
every test sample and its optimization process is formulated
in an iterative manner, which is computationally expensive
for a large training set.

To improve its speed, SVTPT (Support Vector-based
Transductive Parameter Transfer) [25] is proposed to train
multiple SVM classifiers, one for a subject, along with an
additional SVM regressor, to generate a new SVM clas-
sifier for a test subject by predicting the new classifier’s
model parameters from the previously trained ones through
regression. However, SVM regression is sensitive to subtle
changes if there are only limited training data, which may
lead to incorrect AU labels from mutable facial expressions.
To overcome the problem, CPM (Confidence Preserving
Machine) [26] is proposed to isolate difficult, confusing
training samples at first, and use the remaining data to train a
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pair of classifiers to separate assuredly positive and negative
samples, and finally propagate the predictions from the easy
samples to the isolated hard samples through spatio-temporal
constraints. Because methods in this category require more
computation in the test phase, they are generally slower than
inductive-learning methods in terms of real-time response.
Because both facial unit action detection and primary-
emotion-labeled FER aim to generate labels from facial
images, they are two problems highly related each other and
their shared information is exploited by a few recently pub-
lished methods. The abundant amount of primary-emotion-
labeled datasets are transferred to offer probabilistic priors
as extra information to improve the accuracy of an AU
detector [27]. To alleviate the intensive effort to generate AU
labels, weakly supervised learning methods are proposed to
take advantage of unlabeled training data [19], [28], [29].
Unlike facial images captured in labs where subject’s poses
are highly controlled, facial images in the wild contain
diverse poses. To address the issue, pose information is
extracted in terms of facial landmarks and combined with
appearance features to recognize facial action units [30].

Facial Expression Recognition. Facial expression recogni-
tion is a research topic highly close to facial AU recognition
and differs primarily in annotations—expression labels are
created based on subjectively emotional expressions while
AU labels are coded through a system taxonomizing facial
muscle movements. Numerous methods and datasets have
been proposed in the literature to recognize several primary
emotions including anger, disgust, fear, happiness, sadness,
surprise, contempt, and neutral [31], [32], [33]. To the best of
our knowledge, no existing AU recognition method exploits
identity subtraction in the same way as the proposed IdenNet,
but a few existing facial expression recognition methods
partially share similar components of IdenNet.

CNN-based  feature  extractors are used by
CCNET+CDA [34], TACNN [35], 2B(N+M) [36], and
IdenNet, but the CNN architecture of CCNET+CDA is
very shallow, i.e. only a convolutional layer and a max-
pooling layer. Unlike the other three methods which learn
convolutional kernels using back propagation, CCNET+CDA
learns the kernels through contractive discriminative
analysis (CDA) and presumes that expressions are the only
discriminative factor. Therefore, CCNET+CDA does not
use any identity information.

TACNN differs from 2B(N+M) and IdenNet in the way of
using identity labels. JACNN simply treats identity labels
as another type of expression labels so its architecture
is simply expanded from its simplified baseline Exp-Net.
This approach works well for datasets of which images are
captured in well controlled situations where image variation
only comes from either expressions or subjects. On the
contrary, IdenNet is motivated by the observation that images
in the wild may be highly noisy and inconsistent. Along with
identities, several issues such as lighting conditions, camera
models, distance, head poses, and noise will all increase
the intra-class variation. Thus IdenNet first exploits a noise-

resistant face feature extractor, then refines extracted features
by identity labels, and finally employs identity subtraction to
improve recognition accuracy.

2B(N+M) and IdenNet are similar in terms of the CNN-
based architecture containing two branches, one for facial
label classification and another for metric learning using
identity information. While 2B(N+M) primarily validates
that its proposed 2B(N+M)-tuplet cluster loss along with
the two-branch architecture is more effective than other
tuplet losses for metric learning, IdenNet is proposed to
generate robust performance efficiently. Thus IdenNet adopts
LightCNN as the feature extractor instead of 2B(N+M)’s
Inception-style convolutional groups because LightCNN is
explicitly designed for face feature extraction. In addition,
to integrate feature vectors generated by the two branches,
IdenNet utilizes identity subtraction instead of concatenation
used by 2B(N+M).

Neutral-subtracted features are effective to represent ex-
pressive appearances by reducing the influence of back-
ground pixels and skin tones [37]. Although both Haber et
al.’s method [32] and IdenNet utilize subtraction to generate
effective features, the targets to be subtracted are different.
Haber et al’s target is an average neutral face because a
neutral face is most different from expressive ones. Thus,
Haber et al. train a SVM to explicitly classify faces into
expressive and neutral ones, and then generate the average
neutral face feature for subtraction. In contrast, IdenNet does
not require an external binary classifier. Its triplet loss of the
clustering task implicitly drives CNN weights to distinguish
neutral and expressive faces because the samples of the triplet
loss are collected by hard-negative mining, which prefers
significantly different training examples, i.e. a pair of neutral
and expressive faces.

Face Space. Face space is a theoretical idea in psychology
where recognizable faces are stored [38], and there are many
psychological properties contained in the space as such race
bias and recognition distinctiveness effect [39], [40]. In re-
cent years, new findings are discovered that invariant features
of faces can be used to facilitate facial expressions [41] and
facial motor information is sufficient for identity recogni-
tion [42]. As images are digitalized, they can be interpreted
as a group of data in a high-dimensional space accessible by
computers, and face space is a special subspace contained.
These psychology studies provide theoretical supports for
the proposed method to detected AU patterns. From the
respective of face space, facial AU detection is equivalent
to localizing numerous subspaces where AU-labeled faces
are stored.

Face-based Identity Recognition. Face recognition is a
long-established computer vision problem and numerous
datasets and methods are repeatedly proposed to address the
problem. Advanced by large datasets and CNNs’ sophisti-
cated models, promising results have been demonstrated on
many 2D image datasets [43], [11], [44]. Due to its long
research history and successful high performance, there are
ample opportunities to utilize developed face recognition
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methods along with their training data to address other face-
related problems. The proposed method takes the approach
and fully utilizes existing face recognition methods [44], [45]
by adopting their feature extracting architecture and CNN
weights pre-trained by a large face recognition dataset [12].

ITII. PROPOSED METHOD

IdenNet aims to tackle a problem of facial AU detection:
the identity-caused appearance change may exceed the one
generated by expressions. If a classifier is trained without
taking the problem into consideration, the learned model may
fail to predict correct AUs for new subjects. To handle this
issue, the theoretically best approach is to expand the training
dataset, to ensure that the dataset covers sufficiently diverse
subjects so that any attribute can be sampled. However,
due to the considerable effort to annotate AUs, all existing
AU-labeled datasets are all compiled with limited subjects.
To overcome the difficulty, we propose multi-task network
cascades containing two sub-tasks—face clustering and AU
detection—with shared convolutional layers to extract low-
level features, as shown in Fig. 1. The incorporated face clus-
tering task is trained using identity-annotated (ID-annotated)
datasets by exploiting their abundant amount of face images
and wide range of subject attributes. It is designed to extract
features from face images in a way that the feature vectors
will be close to each other in the feature space if they
are from the same subject, and far apart if they are not.
The extracted features are used as parameters for translation
transformation in the feature space so that the difference
caused by subjects will be significantly reduced. To illustrate
the idea, we show an example in Fig. 2 using the t-SNE [46]
to visualize a set of real-world images. The individual differ-
ences among subjects make their feature vectors (represented
by face images) scatter at different locations in the feature
space. We aim to learn subject-specific transformations for
all subjects to eliminate the bias caused by their identities so
that AUs will become easier to be recognized. At the end, we
recognize the AUs of an input image using its transformed
facial features through an AU detection task.

IdenNet’s cascades structure is inspired by [47] to solve
sub-tasks sequentially by exploiting causal dependency
among them. To accommodate a large amount of training
data with efficient computation, we utilize a compact CNN
model named LightCNN [45] as the shared layers between
our two sub-tasks.

Face Clustering. Let x; be a face image and y; € {—1,1}¢
be its label where ¢ is the number of AU classes, X and
Y be the training dataset containing N sample pairs, and
S(x;) be a feature vector extracted by the shared layers
presented in Table I. Note that the MFM (Max-Feature-
Map) operation in LightCNN is an alternative of the widely
used ReLU (Rectified Linear Unit) activation, and makes
this model light and robust since it only suppresses a small
number of neurons. Our face clustering task learns a mapping
function F : X — R that encodes a face image x; into a d-
dimension feature vector F(x;) and preserves identity (ID)

consistency, Specifically, we minimize ||F(x;) — F(x;)|| if
ID(x;) = ID(x;) and maximize ||F(x;) — F(x;)|| otherwise.
We propose

F(x)
where FCS5 is a fully connected layer and NORM is an I,
normalization layer, inspired by FaceNet [44], to achieve
higher recognition performance. To train F(- ), we use the
triplet loss, which defines a image triplet (x¢,x/ ,xl ) that x¢
is an image serving as an anchor and x” and x! are two
images with a positive and negative relationship in terms of
identities between x¢, i.e. x¢ #x! and ID(x¢) = ID(x"), but
ID(x{) # ID(x!). Because the amount of triplets available
from X is in the cubic order of |X|, we adopt a scheme of hard
negative mining to select the most effective triplets to train
the CNN model through back-propagation. As illustrated
in Fig. 3, we use a hyper-parameter r to control the ratio
of hard samples. For each identity in our training set, we
randomly select a pair of x¢ and x”, then generate the feature
vector F(x?) to find the hard samples by navigating all
negative images and picking the portion which generates the
large losses, and randomly choose negative images from the
remaining portion. By setting up a proper hyper-parameter r
as the ratio of the hard negative portion to a training batch,
the scheme ensures the balance between training cost and
generality because the most decisive samples will be first
used and all other samples will still be picked with an even
probability. The triplet loss is defined as

Lp(X)= Y,  max(0.k+||F(x{)—F(x})]l3

(xa,xp,x )T

—[[F(x{) = F(x{

= NORM(FC5(5(x))), (1)

M), )

where k is a given margin value to reduce over-sensitivity,
and T is the set of triplets selected by hard negative mining.

AU Detection. We use the feature vectors extracted from
the face clustering task as the offsets for translation trans-
formation in the AU-detection task, as illustrated in Fig. 1.
The insight under this design is that the change on fa-
cial appearance is highly structured as it is caused by a
specific AU. Therefore, we detect AUs in the domain of
transformed features rather than the domain of features on its
own. We compute the transformed features through identity-
specific translation transformation that subtracts the identity-
dependent features. Let G : X — R¢ be the mapping function
intended for the AU detection task. In order to train the CNN
parameters in G, we use the sigmoid cross entropy loss

Nxcz

=1j=
+1y/ ]log(l— G(x;)’), 3)

where [x] is an indicator function returning 1 if the statement
x is true, and O otherwise, and j indicates the element index
of the feature vectors y; and G(x;).

To subtract a vector from the vector generated from the
face clustering task F(-), their dimension need to be matched

La(X,Y) vl = 1]log(G(x;))
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Fig. 2. Tllustration of identity subtraction for AU detection. We use t-SNE to
visualize the feature distribution of 6000 images (1000 images per subject).
The colors on the left and right sides indicate AU12 labels and subjects’
identities. (a) Because of the face clustering task, FC6(S(x)) features cluster
together primarily by their identities and secondarily by their AU12 labels.
(b) The FC6(S(x)) — F(x) features benefit from identity subtraction and
organize those images into two groups based on the AU12 labels. Therefore,
the features better separate the existence of AUs.

so we apply a fully connected layer on the feature extracted
from the shared layers S(-) as the manner for F(-), to reduce
its dimension to d. Thereafter, to predict AUs from the
translated feature vector, we apply another fully connected
layer and a sigmoid layer in the same way as ROINet to
formulate

G(x)=0 (FC7 (FC6(S(x)) — F (X))) ;

where o(-) denotes the sigmoid function. We use a single
fully connected layer for classification because we want to
keep our model simple to evaluate the performance of the
idea of exploiting identity information. It is possible to use
a complicated model to improve the classification accuracy,
but also likely to make the impact of our idea less clear.

4)

Optimization. To train IdenNet, we combine the two loss
functions by

L(X,Y) = aLpp(X)+ (1 —a)Lw(X,Y), 5)

where o is a weight balancing the losses of the two sub-
tasks, and we repeatedly adjust the weight upon the two

parameter of the ratio of hard samples. We first pick the leading n x r out
of the p negative samples which generate large losses, and then randomly
select n x (1 —r) instances from the remaining negative samples.

different types of training batches we used to generate an
effective cascades model because we use both types of AU-
and ID-annotated images.

Our training process contains two stages: First, we train
S(-) and F(-) on an ID-annotated dataset using o = 1.0
because AU labels are unavailable. Second, we train the
whole cascades in an end-to-end manner using both AU- and
ID-annotated datasets. We set & as 0.5 for batches which are
generated from images of an AU-annotated dataset because
both identity and AU labels are available, and o as 1 for
batches from an ID-annotated dataset.

IV. EXPERIMENTS

We evaluate our method on the widely used BP4D,
UNBC-McMaster and DISFA datasets and use CelebA as
the ID-annotated dataset. To investigate the capability of
generalization, we conduct experiments for cross-dataset
scenarios where models are trained on BP4D and applied
on UNBC-McMaster and DISFA directly without additional
optimization processes. For a fair comparison, we use the
same Fl-frame as existing methods [25], [18], [22], which
is a frame-based F1 score, defined as the harmonic mean
of precision and recall and averaged by all frames. In the
preprocessing stage, we align images at eyes and resize
the resolution to 128 x 128 pixels. IdenNet’s architecture is
shown in Table I. We initialize S(-) and F(-) (CONVI to
NORM) using LightCNN’s pre-trained weights modell, and
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TABLE I
ARCHITECTURE OF THE PROPOSED MULTI-TASK NETWORK CASCADES

Filter Size

Layer Type /Stride Output Size #Params
Shared Layers (Input: Image 128 x 128 x 3)
CONVI 9x91/1 120 x 120 x 96 233K
POOL1 2x2/2 60 x 60 x 96 -
MFEM1 - 60 x 60 x 48 -
CONV2 S5x57/1 56 x 56 x 192 230.4K
POOL2 2x2/2 28 x 28 x 192 -
MFM2 - 28 x 28 x 96 -
CONV3 5x5/1 24 x 24 x 256 614.4K
POOL3 2x2/2 12 x 12 x 256 -
MFM3 - 12 x 12 x 128 -
CONV4 4x4/1 9x9x 384 786.4K
POOL4 2x2/2 5x5x384 -
MFM4 - 5x5x%192 -
Face Clustering (Input: MFM4)

FC5 - 512 2,457.6K
MFEM5 - 256 -
NORM - 256 -

AU Detection (Input: MFM4)
FC6 - 512 2,457.6K
MFM6 - 256 -
SUBTRACT _ 256 _
(MFM6-NORM)
FC7 - 12 3K
[ Total [ - [ - [ 6,572.8K |
TABLE II

COMPARISON ON MODEL SIZE AND SPEED

[ Method | #Params | Frames per second |
DRML 56,855.1K 82.52
ROINet | >12,351.1K N.A.
E-Net+ATF | >12,351.1K N.A.
SVTPT — 2.00
IdenNet 6,572.8K 155.06

layers from FC6 to FC7 using random numbers. IdenNet’s
size and execution time are compared in Table II.

Because the code of ROINet and E-Net+ATF is not
released, their execution time is unable to report and their
model sizes are conservatively calculated from their feature
extractors. SVTPT is not a CNN-based method so that we
do not measure its number of parameters. We empirically
set the hyperparameters k, n, r, and d as 0.5, 4, 0.5 and
256, and optimize the model using Adam optimizer [48]
with a learning rate 0.0001 and batch size 64. We generate
a set of 64 image triplets as a training batch by randomly
selecting 16 identities at first. Then we make 16 positive
pairs by randomly selecting the anchor and positive images
x¢ and x”. For each positive pair, we compute the feature
vector F(x?) and feature vectors of all negative samples
F(x?) to do the hard negative mining. Because we set n
as 4 and r as 0.5, 2 negative images are hard sampled
and the other 2 negative images are randomly selected. We
use Caffe [49] to conduct all experiments on a machine
with an Intel i7 3.4 GHz CPU, 32GB memory, and an
NVidia GPU Titan X. Our code is available at https:
//github.com/andytu455176/IdenNet.

Within-dataset Scenarios. In this scenario, we train and
apply IdenNet using the same AU-annotated dataset. For a

TABLE III
F1-FRAME ON THE BP4D DATASET WITH 3-FOLD RANDOM SPLITS.

AU | AlexNet | DRML | SVTPT | LightCNN | E-Net+ATF | ROINet | IdenNet

1 40.4 36.4 393 44.0 39.2 36.2 50.5
2 26.0 418 349 329 352 316 359
4 40.8 43.0 375 49.8 459 434 50.6
6 69.0 55.0 64.7 74.8 71.6 77.1 77.2
7 66.0 67.0 724 72.9 719 737 74.2
10 77.8 66.3 75.0 80.0 79.0 85.0 82.9
12 81.7 65.8 79.6 83.6 83.7 87.0 85.1
14 51.8 54.1 48.2 58.2 65.5 62.6 63.0
15 235 332 392 29.9 338 45.7 422
17 51.8 48.0 57.7 55.2 60.0 58.0 60.8
23 25.6 317 33.0 313 373 383 42.1
24 342 30.0 40.4 36.2 418 374 46.5
Ave | 491 | 483 | 518 | 541 | 554 | 564 | 593
TABLE IV

F1-FRAME ON THE DISFA DATASET WITH 3-FOLD RANDOM SPLITS.

AU | AlexNet | DRML | SVTPT | LightCNN | E-Net+ATF | ROINet | IdenNet

1 6.9 17.3 14.9 19.4 452 415 255
2 6.6 17.7 19.1 16.5 39.7 26.4 34.8
4 39.4 374 414 458 47.1 66.4 64.5
6 38.4 29.0 432 402 486 50.7 452
9 289 10.7 25.1 285 32,0 8.5 44.6
12 54.4 37.7 67.9 70.9 55.0 89.3 70.7
25 58.2 385 64.6 74.4 86.4 88.9 81.0
26 40.3 20.1 35.0 513 39.2 15.6 55.0
Ave | 354 | 267 | 389 | 434 | 492 | 485 | 526

fair comparison, we use the same splits used by ROINet on
BP4D in our experiments and the released code of DRML
and SVTPT from their project websites. On DISFA and
UNBC-McMaster, we randomly split the datasets into 3 folds
which contain mutually exclusive sets of subjects. Although
the compared method AlexNet [9] is not originally designed
for AU detection, it is a representative method for object
recognition, working as a baseline in our experiments. Please
note that there are two variants of ROINet, named R-T1 and
R-T2 [22], which generate higher f1-frames over ROINet on
the BP4AD dataset. However, they require a different format
of input data—video—because their architecture contains
LSTM [50] which exploits temporal consistency but cannot
work for still images. For ATF, we compare IdenNet with
the best model in [23], E-Net+ATF, and E-Net denotes the
CNN with enhancing layers proposed in [51]. Since we use
LightCNN’s structure as our shared layers and its pre-trained
model as our initial weights, we conduct the comparison
against it as a baseline.

As shown in Tables Il and V, IdenNet generates the
best F1 scores on 9 out of 12 AUs on BP4D, 4 out of 6
on UNBC-McMaster, and the best average F1 scores on the
three datasets as shown in Table IV. The improvement over
LightCNN on the three datasets shows the effectiveness of
the proposed face clustering task for AU detection and we
attribute it to two factors. First, images with similar facial
appearances are likely to share similar AU responses, and we
exploit this property through the face clustering task. Second,
although CelebA and the three AU-annotated datasets are
compiled to serve different purposes, all of their images
belong to the same domain, i.e. human faces, and IdenNet
takes advantage of the commonalty to train its CNN model.

Cross-dataset Scenarios. To verify IdenNet’s generalization
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TABLE V
F1-FRAME ON UNBC-MCMASTER WITH 3-FOLD RANDOM SPLITS.

AU | AlexNet | DRML | SVTPT | LightCNN | IdenNet

6 27.0 293 10.3 363 53.9
7 8.0 153 1.4 18.0 223
12 326 35.5 14.1 34.0 48.5
25 1.7 6.4 9.0 7.1 47
26 47 0.8 4.7 5.7 3.5
43 9.5 17.9 7.4 2738 37.8
Ave | 139 | 175 | 78 | 215 | 285
TABLE VI

F1-FRAME ON DISFA USING MODELS TRAINED ON BP4D.

AU | AlexNet | DRML | SVTPT | LightCNN | IdenNet

1 134 11.6 12.4 13.0 20.1
2 10.2 47 11.2 8.2 255
4 275 325 13.1 36.5 373
6 337 328 | 259 413 49.6
12 474 497 | 443 537 66.1
Ave | 264 | 263 | 214 | 306 | 397

ability, we conduct experiments under two cross-dataset sce-
narios: to train a model on the BP4D dataset and apply it to
the UNBC-McMaster and DISFA datasets without any fine-
tuning. Unlike cross-dataset experiments reported in previous
work [18], [22] that require additional optimization processes
on new datasets, ours are more challenging practical because
we do not exploit any prior knowledge of the test datasets.
Since the AUs labeled in the three datasets are different, we
evaluate as many AUs in common as possible.

As shown in Tables VI and VII, IdenNet achieves the
best performance, leaving a margin over existing methods.
The reason is the dissimilarity between the training and test
datasets. All subjects in the BP4D dataset are young adults
at the ages less than 30, but those in UNBC-McMaster
are the middle-aged who suffer from shoulder pain. The
dissimilarity makes DRML and LightCNN, which adopt the
direct inductive-learning approach, generate low performance
by applying learned rules on new data. On the other hand,
SVTPT, the method belonging to the transductive learning
approach by adopting predefined kernels to measure sub-
ject similarity, makes mistakes because the test samples
are highly different from the training samples. In contrast,
IdenNet contains a sub-network specialized in identity sub-
traction and trained from a large dataset containing numerous
subjects at various ages, so IdenNet extracts effective features
and generates robust predictions.

For the DISFA dataset, although its subjects are similar to
BP4D in terms of age, its environment setting is definitely
dissimilar, especially for lighting. The light appearance is
cool white in DISFA but warm yellow in BP4D, and the light
type is spotted in DISFA but ambient in BP4D. In addition,
a significant light source is set up on top of subjects only in
DISFA, which results in shiny hairs and shadowy cheeks.

Because images of BP4D and DISFA are highly dissimilar,
the cross-dataset experimental F1 scores shown in Table VI
are significantly worse than those generated under the within-

TABLE VII
F1-FRAME ON UNBC-MCMASTER USING MODELS TRAINED ON BP4D.

AU | AlexNet | DRML | SVTPT | LightCNN | IdenNet

4 3.7 46 6.1 6.3 9.7
6 25.4 246 | 206 28.1 33.0
7 14.8 13.4 1.6 124 12.8
10 4.5 2.7 2.0 2.8 2.8
12 279 310 | 254 29.0 42.1
Ave | 153 | 153 | 131 | 157 | 204

dataset scenario shown in Table IV in respect to the same
AUgs, i.e. units 1, 2, 4, 6, and 12. To measure the performance
between within- and Ucrogs—dataset scenarios, we define the
drop rate as %Z{; f";(,f" , where f is the Fl-frame, o and
n denotes the originaf (training) and new (test) datasets,
respectively, and i is the index of K AUs shared by o and
n. IdenNet generates the smallest drop rate of 33%, while
other methods generate drop rates greater than 46% for the
case that 0 is BP4D and n is DISFA. For another case that o
is BP4D and n is UNBC-McMaster, the drop is more severe
because the subjects of the two datasets are highly different.
IdenNet still generates the smallest drop rate of 72%, while
other methods generate drop rates greater than 74%.

Ablation Study on the Normalization Layer. We conduct
an ablation study on the NORM layer in Eq. 1. Without the
layer, IdneNet’s F1-frame on the BP4D, DISFA and UNBC-
McMaster within-dataset scenario drops from 59.3 to 58.0,
52.6 to 47.8, and 28.5 to 23.9, respectively. The reason is that
LightCNN adopts cosine similarity as the metric to evaluate
the similarity among faces. IdenNet uses LightCNN’s pre-
trained weights, but adopts Euclidean distance as the metric
instead of cosine similarity. Therefore, the normalization
layer reorganizes the output features and helps improve the
face clustering performance.

V. CONCLUSIONS AND FUTURE STUDY

In this paper, we propose IdenNet, a novel method for
AU detection by exploiting identity information and a large
number of ID-annotated training images. IdenNet extracts
identity-dependent features in the face clustering task and
normalize them in the AU detection network. After reducing
the bias caused by individual subjects, the identity-subtracted
features better present the differences generated by AUs.
Experiments conducted under both within- and cross-dataset
scenarios on benchmark datasets validate the effectiveness
and robustness of the proposed method.

We utilize the simple translation transformation for iden-
tity subtraction and find that it is effective to reduce indi-
vidual bias. It remains an open question whether a com-
plicated transformation such as the affine transformation
will make the network more powerful. In addition, the
approach reported in [22] to improve ROINet’s performance
by adopting LSTM to exploit temporal consistency is worthy
of comparison because IdenNet is capable of incorporating
LSTM to reduce the differences of temporal AU changes
among subjects.
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