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A Hyperparameter Search Space and Sensitivity

We show our search space and initial values in Tab. A.

Table A: Hyperparameter search space and initial values

No. Hyperparameter Space Initial

1 βx and βy (0, 1.0)
2 Learning rate’s exponent (-6.0, -3.0) -5
3 Batch size {32, 64, 128, 256} 64
4 Discriminator steps nd {1, 2, 3, ..., 16} 10
5 Hidden dim. of zrx and zy {128, 144, 160, ..., 256} 192
6 Hidden dim. of zvx {8, 12, 16, ..., 32} 8

We first fix No. 2∼6 and randomly sample No. 1 in uniform distribution 5
times. We choose the one generating the highest GZSL harmonic mean on the
validation set. Then we fix No. 1 and randomly sample No. 2∼6 100 times.

Table B shows the influence of βx and βy on the experiments of Tables 6 and
7 in the main paper. As reported in Table 5 in the main paper, we use βx as
0.023 and βy as 0.011 because they perform best on the validation set. We leave
out βx and βy ≥ 0.2 because their performance is low.

B Feature Extractors

We show an example by re-organizing Tables 6 and 7 in the main paper as
Tab. C. Their dataset, splits, and hyperparameters are the same and the only
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Table B: Sensitivity of βx and βy on ZSL and GZSL metrics.

βx βy
ZSL GZSL

Acc Accs Accu H

0.010 0.010 83.60 81.14 67.14 73.48
0.050 0.010 84.39 73.87 73.24 73.55
0.010 0.050 83.13 77.61 71.22 74.28
0.050 0.050 83.62 70.74 74.23 72.44
0.100 0.100 82.79 75.96 68.86 72.24
0.200 0.200 76.12 71.79 62.90 67.05

0.023 0.011 84.20 78.16 72.60 75.27

difference lies in feature extractors. Experimental results show that extractors
matter and our proposed ST-GCN+CLIP works best.

Table C: Average ZSL accuracy and GZSL metrics (%) of different feature extractors
under the random split setting on NTU-60.

Feature Extractors ZSL GZSL

Acc Accs Accu H

ST-GCN [5] + Sentence-BERT [4] 74.38 71.39 61.02 65.80
PoseC3D [1] + CLIP [3] 81.84 83.48 66.89 74.27

ST-GCN [5] + CLIP [3] 84.20 78.16 72.60 75.27

C Combining with Existing Methods

To potentialy improve our performance, we combine our method with pose
canonicalization on skeleton data [2] and enhanced class descriptions by a large
language model proposed in SMIE [6]. We will discuss the details and experi-
mental results in the following sections.

C.1 Pose Canonicalization on Skeleton Data

The difference in the forward direction of the skeleton data introduces additional
noise into the training process. Therefore, we implement the method proposed
by Holden et al . [2] to canonicalize the skeleton data by rotating them so that
they face the same direction. We compute the cross product between the vertical
axis and the average vector of the left and right shoulders and hips to determine
the new forward direction of the body. We then apply a rotation matrix to
canonicalize the pose.
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Tables D and E present the experimental results under random split settings
listed in Table 5 of the main paper. In zero-shot settings, we observe that canoni-
calization of skeleton data has little effect on model performance. For generalized
zero-shot settings, we note a slight decrease in both seen and unseen accuracies.
We hypothesize that this is because canonicalization reduces the variation in
the skeleton dataset. This reduction in diversity limits the range of examples
the model encounters during training, which may ultimately impair its ability
to generalize effectively.

Table D: Average ZSL accuracy (%) under the random split setting on the NTU-60,
NTU-120, and PKU-MMD datasets.

Method NTU-60 NTU-120 PKU-MMD
55/5 split 110/10 split 46/5 split

SA-DVAE 84.20 50.67 66.54
SA-DVAE + pose canonicalization 84.03 50.04 67.56

Table E: Average GZSL metrics: seen class accuracy Accs, unseen class accuracy Accu,
and their harmonic mean H (%) under the random split setting on the NTU-60, NTU-
120, and PKU-MMD datasets.

Method
NTU-60 NTU-120 PKU-MMD

55/5 splits 110/10 split 46/5 split

Accs Accu H Accs Accu H Accs Accu H

SA-DVAE 78.16 72.60 75.27 58.09 40.23 47.54 58.49 51.40 54.72
SA-DVAE + pose canonicalization 72.84 69.85 71.31 56.78 35.22 43.47 54.13 50.60 52.30

C.2 Enhanced Class Descriptions by a Large Language Model
(LLM)

Zhou et al . [6] propose to use an LLM to augment class descriptions with richer
action-related information and we directly compare our and their methods by
using their augmented descriptions. We report results using the same setting
for random split and list our hyperparameters in Table F, and generate results
shown in Tables G and H, which show that SA-DAVE outperforms SMIE using
augmented descriptions in both ZSL and GZSL protocols and LLM-augmented
descriptions significantly improve unseen accuracy while marginally decreasing
seen accuracy. This is consistent with the pattern observed in the ablation study,
indicating that the models achieve a more balanced prediction with minimal bias
toward seen or unseen classes.
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Table F: Settings for LLM-augmented class descriptions under the random split set-
ting.

NTU-60 NTU-120

Skeleton Feature Extractor ST-GCN [5]
Text Feature Extractor CLIP-ViT-B/32 [3]
Epochs 10
Optimizer Adam
No. of unseen classes 5 10
Optimizer Momentum β1 = 0.9, β2 = 0.999
Batch size 32 24
Learning rate 4.94e-05 2.13e-05
Weights of DKL in LVAE βx = 0.023, βy = 0.011
Weight of LT λ2 = 0.011
Discriminator steps nd 4 16
Hidden dim. of zrx and zy 96 304
Hidden dim. of zvx 8 12

Table G: ZSL accuracy (%) with LLM-augmented class descriptions on the NTU-60
and NTU-120 datasets.

Method NTU-60 NTU-120
55/5 split 110/10 split

SMIE [6] 65.08 46.40
SMIE + augmented text [6] 70.89 52.04

SA-DVAE 84.20 50.67
SA-DVAE + augmented text 87.61 57.16

Table H: GZSL metrics (%) with LLM-augmented class descriptions on the NTU-60
and NTU-120 datasets.

Method
NTU-60 NTU-120

55/5 splits 110/10 split

Accs Accu H Accs Accu H

SA-DVAE 78.16 72.60 75.27 58.09 40.23 47.54
SA-DVAE + augmented text 74.54 76.50 75.51 53.32 48.36 50.72
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