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A B S T R A C T

Background: Chronic Obstructive Pulmonary Disease (COPD) is a major contributor to global morbidity and 
healthcare costs. Accurately predicting these costs is crucial for resource allocation and patient care. This study 
developed and validated an AI-driven COPD Medical Cost Prediction Index (MCPI) to forecast healthcare ex
penses in COPD patients.
Methods: A retrospective analysis of 396 COPD patients was conducted, utilizing clinical, demographic, and 
comorbidity data. Missing data were addressed through advanced imputation techniques to minimize bias. The 
final predictors included interactions such as Age × BMI, alongside Tumor Presence, Number of Comorbidities, 
Acute Exacerbation frequency, and the DOSE Index. A Gradient Boosting model was constructed, optimized with 
Recursive Feature Elimination (RFE), and evaluated using 5-fold cross-validation on an 80/20 train-test split. 
Model performance was assessed with Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), and R-squared (R²).
Results: On the training set, the model achieved an MSE of 0.049, MAE of 0.159, MAPE of 3.41 %, and R² of 
0.703. On the test set, performance metrics included an MSE of 0.122, MAE of 0.258, MAPE of 5.49 %, and R² of 
0.365. Tumor Presence, Age, and BMI were identified as key predictors of cost variability.
Conclusions: The MCPI demonstrates strong potential for predicting healthcare costs in COPD patients and en
ables targeted interventions for high-risk individuals. Future research should focus on validation with multi
center datasets and the inclusion of additional socioeconomic variables to enhance model generalizability and 
precision.

1. Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a prevalent res
piratory disorder and a leading cause of morbidity and mortality 
worldwide [1,2]. The World Health Organization (WHO) projects that 
COPD will become the third leading cause of death globally by 2030, 
underscoring its significant impact on healthcare systems [3,4]. The 
disease is characterized by chronic respiratory symptoms and airflow 
limitation [5,6], commonly exacerbated by environmental and lifestyle 

factors, particularly smoking [7–10]. COPD’s progression is frequently 
marked by acute exacerbations—sudden worsening of symptoms that 
often require immediate, intensive medical intervention [11–13]. These 
episodes are among the most significant cost drivers in COPD manage
ment, leading to increased hospital admissions, emergency visits, and 
resource utilization [14,15].

Accurately predicting healthcare costs in COPD patients is essential 
for effective management and resource allocation. Traditional cost 
prediction models have generally relied on limited demographic and 
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clinical variables, such as age, gender, and disease severity, which often 
fail to capture the complexity of COPD-related healthcare needs [16,17]. 
Although indices like BODE (Body mass index, airflow Obstruction, 
Dyspnea, and Exercise capacity) and DOSE (Dyspnea, Obstruction, 
Smoking, Exacerbations) provide insights into disease severity and pa
tient prognosis [18–20], they lack the specificity needed to forecast 
healthcare costs accurately. This limitation emphasizes the need for a 
more comprehensive, adaptable tool that incorporates multiple clinical 
dimensions relevant to COPD costs [21,22].

Advancements in artificial intelligence (AI) and machine learning 
have made it possible to develop more sophisticated predictive models 
capable of capturing complex patterns in healthcare data [23,24]. AI 
algorithms, such as Gradient Boosting models, excel in handling 
high-dimensional datasets, integrating multiple variables, and identi
fying non-linear relationships, which are essential for the nuanced cost 
prediction needed in COPD management [25–28]. Leveraging AI can 
facilitate a more accurate and personalized approach to forecasting 
COPD-related expenses, enabling proactive risk management and 
cost-effective care strategies [29,30].

In this study, we developed the COPD Medical Cost Prediction Index 
(MCPI), an AI-derived index aimed at predicting healthcare costs in 
COPD patients [31,32]. Using a Gradient Boosting model trained on data 
from 396 patients, the MCPI integrates five key clinical predictors: Age 
× BMI, Number of Comorbidities, Tumor Presence, Acute Exacerbation, 
and DOSE Index. The model was optimized through grid search with 
cross-validation, with its predictive performance assessed using multiple 
metrics, including MSE, MAE, MAPE, and R² [33–35]. By identifying 
patients at risk for high medical costs, the MCPI holds potential as a 
clinical tool to inform personalized care, targeted interventions, and 
efficient resource allocation.

2. Methods

2.1. Study design and population

This retrospective cohort study included 396 patients diagnosed with 
COPD, with data collected from Chang Gung Memorial Hospital. Each 
record contained demographic, clinical, and comorbidity metrics rele
vant to predicting healthcare costs. Inclusion criteria were applied to 
ensure the study population was representative of COPD patients. This 
study developed and validated an AI-driven COPD Medical Cost Pre
diction Index (MCPI) to forecast healthcare expenses in COPD patients.

2.2. Variable selection and data processing

To minimize information loss and reduce bias, the dataset was re- 
analyzed using multiple imputation methods rather than excluding re
cords with missing data. Variable selection for the COPD Medical Cost 
Prediction Index (MCPI) combined statistical analysis, automated 
feature selection, and clinical expertise. Initial Pearson correlation 
analysis assessed the relationships between candidate predictors and 
total healthcare costs, with variables having an absolute correlation 
coefficient (|r|) > 0.2 and p < 0.05 considered for further evaluation.

Using Recursive Feature Elimination (RFE) and clinical judgment, 
five key predictors were identified as significant: Age × BMI (interaction 
term), Number of Comorbidities, Tumor Presence, Acute Exacerbation, 
and the DOSE Index. Each variable was standardized using z-scores to 
ensure comparability. Highly collinear variables were excluded to 
enhance interpretability, and total healthcare costs were log- 
transformed to address skewness in the distribution.

2.3. Model construction

The MCPI was developed using a Gradient Boosting model, chosen 
for its ability to handle non-linear relationships and high-dimensional 
data. Hyperparameter tuning was conducted via grid search with 

cross-validation to identify the optimal values for parameters: 

• Maximum tree depth: [3, 5, 7]
• Minimum samples per split: [2, 5, 10]
• Learning rate: [0.01, 0.05, 0.1]
• Number of estimators: [50, 100, 150]

To prevent overfitting, early stopping was implemented during 
training. The model incorporated additional temporal variables, such as 
seasonality and trends, to capture variations in healthcare costs over 
time.

2.4. Model validation and evaluation

The model’s reliability was ensured through robust 5-fold cross- 
validation. Performance was evaluated using the following metrics: 

• Mean Squared Error (MSE)
• Mean Absolute Error (MAE)
• Mean Absolute Percentage Error (MAPE)
• R-squared (R²)

Residual analysis was performed to identify systematic prediction 
errors. Feature importance was also evaluated within the Gradient 
Boosting model to quantify the relative contribution of each predictor. 
Stratified sampling was applied to ensure the training and test sets re
flected the full range of cost distributions, improving model 
generalization.

2.5. Ethical considerations

All patient data were anonymized and analyzed in accordance with 
Chang Gung Memorial Hospital’s ethical standards and the Declaration 
of Helsinki. This study was approved by the hospital’s Institutional 
Review Board (IRB number: 201701293B0), with informed consent 
waived due to its retrospective nature.

3. Statistical analysis

All statistical analyses were performed using Python (version 3.8) 
and relevant libraries for data management, modeling, and statistical 
evaluation. The analysis followed these key steps: 

• Data Management:

∘ The pandas library (version 1.3.3) was employed for preprocessing 
the dataset, addressing missing data using advanced multiple 
imputation techniques, and standardizing variables via z-scores to 
ensure consistency and comparability.

• Model development and evaluation:

∘ The scikit-learn library (version 0.24.2) was used to perform 
Recursive Feature Elimination (RFE) for variable selection, develop 
the Gradient Boosting model, and evaluate its performance.

∘ GridSearchCV was utilized for hyperparameter optimization, incor
porating a 5-fold cross-validation strategy to identify the best 
parameter combinations for model performance.

• Statistical evaluation:

∘ The scipy library (version 1.7.1) was applied to calculate Pearson 
correlation coefficients and their corresponding p-values, which 
were used to assess the relationships between candidate predictors 
and total healthcare costs.
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Performance metrics included Mean Squared Error (MSE), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R- 
squared (R²). Statistical significance was determined using a threshold 
of p < 0.05.

4. Results

4.1. Patient characteristics

The dataset comprised 396 COPD patients, whose demographics, 
clinical characteristics, and associated medical costs were analyzed to 
provide a comprehensive population overview. Table 1 summarizes the 
key characteristics. The average age of the patients was 73.1 years 
(± 9.5), with 96.5 % being male. Patients reported a mean smoking 
history of 31.7 pack-years (± 18.5) and an average BMI of 23.5 (± 4.1). 
Lung function tests showed a mean FEV1 of 55.2 % (± 18.2) of the 
predicted value, with 47.2 % of patients in the moderate GOLD stage. 
The average DLCO was 68.5 % (± 21.0), and the mean mMRC dyspnea 
score was 1.72 (± 0.9). The average distance walked during the 6-min
ute walking test was 351.9 m (± 111.6). The BODE, ADO, and DOSE 
indices had respective mean values of 3.0 (± 2.1), 4.9 (± 1.8), and 2.6 
(± 1.1). On average, patients experienced 0.27 (± 0.75) acute exacer
bations annually, with 37 % having a malignant tumor. The mean 
number of comorbidities was 1.27 (± 0.89), and the total medical costs 
averaged 750,000 NTD (± 350,000 NTD) (Table 1). Fig. 1

4.2. Feature importance in MCPI model

Feature importance analysis in the Gradient Boosting model revealed 
the relative contribution of each predictor to the prediction of medical 
costs. Malignant tumor presence (24.7 %) was identified as the most 
significant variable, followed by age (18.6 %) and BMI (18.2 %), indi
cating their substantial influence on total healthcare expenditures. The 
remaining predictors— Acute Exacerbation (16.2 %), number of 
Comorbidities (11.9 %), and DOSE Index (10.4 %)—also played critical 
roles in determining costs but to a lesser extent (Fig. 2).

The importance rankings provide valuable insights into the factors 
driving medical expenses in COPD patients, emphasizing the need for 
targeted interventions for those with malignancy, advanced age, or 
higher BMI. The visualization of feature importance helps clinicians 
understand the relative weight of each variable, supporting informed 
decision-making and personalized care strategies. Table 2

4.3. Model performance

The COPD Medical Cost Prediction Index (MCPI) model demon
strated robust predictive capability, explaining 70.3 % of the variance in 
total medical costs for the training set (R² = 0.703) and 36.5 % for the 
test set (R² = 0.365). Key performance metrics are summarized as 
follows: 

• Training Set:

∘ Mean Squared Error (MSE): 0.049
∘ Mean Absolute Error (MAE): 0.159
∘ Mean Absolute Percentage Error (MAPE): 3.41 %

• Test Set:

∘ Mean Squared Error (MSE): 0.122
∘ Mean Absolute Error (MAE): 0.258
∘ Mean Absolute Percentage Error (MAPE): 5.49 %

These results highlight the model’s strong performance in the 
training set and its reasonable generalization to the test set. However, 
the discrepancy between training and test results suggests opportunities 

for further refinement, such as reducing overfitting or improving feature 
representation.

4.4. Visualization of model performance

Figs. 3 and 4 illustrate the model’s predictive performance. The 
scatter plot (Fig. 3) compares actual costs and the predicted costs in the 
training set and test set. The red dashed line represents perfect 

Table 1 
Baseline characteristics of Chronic Obstructive Pulmonary Disease (COPD) 
patients.

Factors Mean ± Standard Deviation (SD) or n (%) 
n = 396

Age (years) 73.1 ± 9.5
Male (%) 382 (96.5)
Body-mass index (BMI) 23.5 ± 4.1
Smoking ​

Yes 
No

347(87.6 %) 
49(12.4 %)

Smoking history (pack-years) 31.7 ± 18.5
FVC (% of predicted value) 79.7 ± 16.7
FEV1 (% of predicted value) 55.2 ± 18.2
FEV1/FVC (%) 52.7 ± 10.6
GOLD stage (%) ​
Mild (I) 46 (11.6)
Moderate (II) 187 (47.2)
Severe (III) 140 (35.4)
Very severe (IV) 23 (5.8)
DLCO (%) 68.5 ± 21.0
6-MWD (m) 351.9 ± 111.6
MIP 72.2 ± 30.5
MEP 98.3 ± 46.8
mMRC dyspnea scale ​
Scale 0/1/2/3/4 25/133/173/56/9
Exacerbations in previous year ​

0–1 
2–3 
> 3

370(93.4 %) 
21(5.3 %) 
5(1.3 %)

CCI 3.3 ± 2.8
BODE INDEX 3.0 ± 2.1
ADO INDEX 4.9 ± 1.8
DOSE INDEX 2.6 ± 1.1
BODE quartile: Q1, Q2, Q3, Q4 

(%)
​

quartile 1 188 (47.5)
quartile 2 109 (27.5)
quartile 3 71 (17.9)
quartile 4 28 (7.1)

ADO quartile: Q1, Q2, Q3, Q4 
(%)

​

quartile 1 40 (10.1)
quartile 2 124(31.3)
quartile 3 152 (38.4)
quartile 4 80 (20.2)

DOSE quartile: Q1, Q2, Q3, Q4 
(%)

​

quartile 1 214 (54 %)
quartile 2 164 (41.4 %)
quartile 3 18 (4.5 %)
quartile 4 0 (0 %)

Number of Comorbidities 1.27 ± 0.89
Acute Exacerbation 0.27 ± 0.75
Malignant Tumor 0.37 ± 0.98
Total Medical Costs (NTD) 750,000 ± 350,000

*Quartile 1 was defined by a score of 0–2, quartile 2 by a score of 3–4, quartile 3 
by a score of 5–6, and quartile 4 by a score of 7–10. Abbreviations: FVC, forced 
vital capacity; FEV1, forced expiratory volume in 1 s; 6 MWD, 6-min walking 
distance; MRC score, Medical Research Council dyspnoea scale; GOLD, Global 
Initiative for Chronic Obstructive Lung Disease; CCI, Charlson comorbidity 
index; DOSE index, composite index of dyspnea, airflow obstruction, smoking 
status, and exacerbation frequency; BODE index, composite index of body mass 
index, airflow maximum expiratory pressure obstruction, dyspnoea, and exer
cise capacity; ADO index, composite index of age, dyspnoea, and airflow 
obstruction.
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prediction (actual = predicted). The high alignment with the perfect 
prediction line also reflects the model’s low training error, consistent 
with the performance metrics (e.g., low MSE and high R² for the training 
set). In the test set scatter plot, points still align with the red dashed line, 
but there is more scatter compared to the training set. Residual Distri
bution Plots (Fig. 4) shows the distribution of residuals (differences 
between actual and predicted costs) in the training set and test set. The 
Training Set residuals demonstrate that the model fits the training data 
well, with minimal systematic errors. The Test Set residuals highlight 
reasonable generalization but with increased variability, pointing to 
areas where the model could be refined for better performance on un
seen data.

5. Discussions

This study successfully developed and validated the COPD Medical 
Cost Prediction Index (MCPI), an AI-powered tool designed to predict 
healthcare costs in COPD patients. By incorporating five critical 

predictors—Age × BMI (interaction term), Number of Comorbidities, 
Tumor Presence, Acute Exacerbation, and the DOSE Index—the MCPI 
offers a robust framework for understanding and managing medical 
expenses in this high-risk population.

The model demonstrated strong predictive performance, explaining 
70.3 % of the variance in total healthcare costs in the training set and 
36.5 % in the test set. Feature importance analysis identified Tumor 
Presence, Age, and BMI as the most influential predictors, providing 
actionable insights for personalized clinical decision-making. Plans to 
develop a web-based tool for real-time application emphasize the 
MCPI’s potential to enhance clinical workflows and optimize resource 
allocation.

The MCPI directly supports resource optimization by enabling 
healthcare providers to identify patients at higher risk for significant 
medical expenses. This targeted approach facilitates the prioritization of 
interventions such as intensive monitoring, preventive care, and 
customized treatment strategies for high-cost individuals. By improving 
the precision of resource planning, hospitals and healthcare systems can 

Fig. 1. Flow chart of selected participants and identification of key variables for COPD Medical Cost Prediction Index.
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allocate staff, equipment, and budgets more effectively, reducing waste 
and enhancing cost-efficiency in COPD management.

5.1. Strengths

This study’s strengths lie in its innovative approach and rigorous 
methodology. By integrating clinical, demographic, and comorbidity 
variables, the COPD Medical Cost Prediction Index (MCPI) provides a 
comprehensive framework for accurately predicting healthcare costs in 
COPD patients. Unlike traditional models limited to a narrow set of 
predictors, this study utilized six critical variables—Age × BMI 

(interaction term), Number of Comorbidities, Tumor Presence, Acute 
Exacerbation, and the DOSE Index—enabling the model to capture a 
broad spectrum of cost determinants. The use of Gradient Boosting 
further enhanced the model’s capability to address complex, non-linear 
relationships among predictors, leading to more robust predictions [36, 
37].

A key strength of the study is its robust validation process. The 
implementation of 5-fold cross-validation ensured the model’s gener
alizability across different data subsets, minimizing overfitting and 
enhancing reliability. The evaluation framework employed multiple 
performance metrics, including Mean Squared Error (MSE), Mean Ab
solute Error (MAE), Mean Absolute Percentage Error (MAPE), and R- 
squared (R²), providing a comprehensive assessment of the model’s 
accuracy and practical applicability [38,39].

Another notable strength is the handling of missing data through 
advanced multiple imputation methods. This approach preserved the 
dataset’s integrity by minimizing information loss and bias while 
maintaining a sufficient sample size. Consequently, the findings are both 
valid and applicable to a broader COPD patient population [40–42].

Fig. 2. Feature importance analysis in the Gradient Boosting model revealed the relative contribution of each predictor to the prediction of COPD medical costs.

Table 2 
Performance Metrics for MCPI Model.

Gradient Boosting Model Performance Metrics

Metric Training Set Testing Set

1 MES 0.049094065165904706 0.12231730926948356
2 MAE 0.15916157996668065 0.25830001799941504
3 MAPE 3.410242861120933 5.491587919030563
4 R-squared 0.7031625529887463 0.3645556959753883

Fig. 3. The scatter plot compares actual costs and the predicted costs in the training set and test set. The red dashed line represents perfect prediction (actual 
= predicted).
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5.2. Limitations

Despite its strengths, this study has several limitations that warrant 
consideration.

First, the use of a single-center dataset limits the generalizability of 
the findings to broader COPD populations. Variations in COPD man
agement practices, healthcare cost structures, and resource availability 
across institutions and regions could impact the model’s performance in 
different contexts. Future research should focus on validating the MCPI 
using multicenter datasets that encompass diverse geographic and de
mographic characteristics.

Second, the exclusion of socioeconomic factors, such as income level, 
education, and access to healthcare resources, may have constrained the 
model’s ability to fully capture cost determinants. Incorporating these 
variables in future studies could provide a more comprehensive under
standing of healthcare cost drivers in COPD patients.

Third, although multiple imputation techniques were employed to 
address missing data, residual bias may persist, particularly in cases 
where data were not missing at random. Future research should explore 
advanced statistical techniques to further minimize this issue.

Lastly, the relatively small sample size of 396 patients limits the 
model’s capacity to generalize to diverse populations. Expanding future 
studies to include larger datasets would improve statistical power and 
robustness, enabling more detailed subgroup analyses. Such analyses 
could explore cost drivers specific to different COPD phenotypes or co
morbid conditions, thereby enhancing the model’s utility in personal
ized care.

5.3. Practical application

The development of a user-friendly web tool is underway to enable 
real-time implementation of the MCPI in clinical settings. This tool will 
feature an intuitive interface for clinicians, allowing for quick data input 
and real-time predictions of medical costs. Designed to integrate seam
lessly with electronic health record (EHR) systems, the tool will 
streamline workflows and minimize manual data entry, enhancing 
clinical efficiency.

In addition to its primary function, the web tool will incorporate 
advanced visualization capabilities, offering clinicians graphical in
sights into cost drivers and the relative contributions of different pre
dictors. For example, bar charts and heatmaps will illustrate the impact 
of variables such as age, BMI, and comorbidities on predicted costs, 
facilitating informed decision-making and resource allocation.

The tool will also support scenario analysis, enabling clinicians to 
modify input variables (e.g., BMI or the number of acute exacerbations) 

to observe potential changes in cost predictions. This feature will assist 
in tailoring patient care plans and identifying high-risk individuals who 
may benefit from targeted interventions.

To ensure accessibility and user engagement, the web tool will 
include multilingual support and integration with mobile platforms. 
This will allow healthcare providers in diverse settings to leverage the 
MCPI for cost prediction, regardless of technological infrastructure or 
language barriers. Plans for incorporating patient-facing features are 
also under consideration, providing transparency and empowering pa
tients to understand factors influencing their healthcare costs.

Future iterations of the tool will include machine learning updates, 
allowing the model to adapt and improve as new data becomes avail
able. Regular feedback from end-users will be collected to refine func
tionality and ensure the tool meets the evolving needs of clinical 
practice. The development of a user-friendly web tool is underway to 
enable real-time implementation of the MCPI in clinical settings. This 
tool will feature an intuitive interface for clinicians, allowing for quick 
data input and real-time predictions of medical costs. Designed to 
integrate seamlessly with electronic health record (EHR) systems, the 
tool will streamline workflows and minimize manual data entry, 
enhancing clinical efficiency.

6. Conclusions

This study successfully developed and validated the COPD Medical 
Cost Prediction Index (MCPI), demonstrating strong predictive perfor
mance with an R² of 70.3 % for the training set and 36.5 % for the test 
set. The model exhibited robust accuracy and minimal residual bias, 
underscoring its potential for clinical application in predicting health
care costs and optimizing resource allocation for COPD patients.

Despite its strengths, the study’s single-center design and the 
exclusion of socioeconomic variables limit the generalizability of the 
findings. Future research should focus on validating the MCPI across 
multicenter datasets to encompass diverse populations and healthcare 
settings. Additionally, incorporating socioeconomic factors, such as in
come level, education, and access to healthcare, could enhance the 
model’s comprehensiveness and precision.

The MCPI represents a significant step forward in leveraging AI- 
driven tools for personalized care and cost management in COPD, 
providing a strong foundation for ongoing advancements in this critical 
area of healthcare.

Ethical approval and consent to participate

The study was conducted in accordance with the Declaration of 

Fig. 4. Residual Distribution Plots shows the distribution of residuals (differences between actual and predicted costs) in the training set and test set.
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