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a b s t r a c t 

Numerous single-image super-resolution algorithms have been proposed in the literature, but few studies 

address the problem of performance evaluation based on visual perception. While most super-resolution 

images are evaluated by full-reference metrics, the effectiveness is not clear and the required ground- 

truth images are not always available in practice. To address these problems, we conduct human subject 

studies using a large set of super-resolution images and propose a no-reference metric learned from vi- 

sual perceptual scores. Specifically, we design three types of low-level statistical features in both spatial 

and frequency domains to quantify super-resolved artifacts, and learn a two-stage regression model to 

predict the quality scores of super-resolution images without referring to ground-truth images. Exten- 

sive experimental results show that the proposed metric is effective and efficient to assess the quality of 

super-resolution images based on human perception. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Single-image super-resolution (SR) algorithms aim to construct

 high-quality high-resolution (HR) image from a single low-

esolution (LR) input. Numerous single-image SR algorithms have

een recently proposed for generic images that exploit priors

ased on edges ( Sun et al., 2008 ), gradients ( Kim and Kwon, 2010;

han et al., 2008 ), neighboring interpolation ( Irani and Peleg, 1991;

imofte et al., 2014 ), regression ( Dong et al., 2014 ), and patches

 Dong et al., 2011; Farsiu et al., 2004; Glasner et al., 2009; Schulter

t al., 2015; Sun et al., 2011; Timofte et al., 2013; Yang and Yang,

013; Yang et al., 2013; 2010 ). Most SR methods focus on gener-

ting sharper edges with richer textures, and are usually evalu-

ted by measuring the similarity between super-resolved HR and

round-truth images through full-reference metrics such as the

ean squared error (MSE), peak signal-to-noise ratio (PSNR) and

tructural similarity (SSIM) index ( Wang et al., 2004 ). In our re-

ent SR benchmark study ( Yang et al., 2014 ), we show that the

nformation fidelity criterion (IFC) ( Sheikh et al., 2005 ) performs
∗ Corresponding author. 
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avorably among full-reference metrics for SR performance evalua-

ion. However, full-reference metrics are originally designed to ac-

ount for image signal and noise rather than human visual per-

eption ( Girod, 1993 ), even for several recently proposed meth-

ds . We present 9 example SR images generated from a same

R image in Fig. 1 . Table 1 shows that those full-reference met-

ics fail to match visual perception of human subjects well for SR

erformance evaluation. In addition, full-reference metrics require

round-truth images for evaluation which are often unavailable in

ractice. The question how we can effectively evaluate the qual-

ty of SR images based on visual perception still remains open.

n this work, we propose to learn a no-reference metric for eval-

ating the performance of single-image SR algorithms. It is be-

ause no-reference metrics are designed to mimic visual percep-

ion (i.e., learned from large-scale perceptual scores) without re-

uiring ground-truth images as reference. With the increase of

raining data, no-reference metrics have greater potential to match

isual perception for SR performance evaluation. 

We first conduct human subject studies using a large set of SR

mages to collect perceptual scores. With these scores for train-

ng, we propose a novel no-reference quality assessment algorithm

hat matches visual perception well. Our work, in essence, uses

he same methodology as that of general image quality assessment

IQA) approaches. However, we evaluate the effectiveness of the

ignal reconstruction by SR algorithms rather than analyzing noise

nd distortions (e.g., compression and fading) as in existing IQA
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(a) Bicubic interpolation (b) Back projection (BP) [4] (c) Shan08 [2]

(d) Glasner09 [7] (e) Yang10 [8] (f) Dong11 [9]

(g) Yang13 [12] (h) Timofte13 [14] (i) SRCNN [6]

Fig. 1. SR images generated from the same LR image using (1) ( s = 4 , σ = 1 . 2 ). The quality scores of these SR images are compared in Table 1 . The images are best viewed 

on a high-resolution displayer with an adequate zoom level, where each SR image is shown with at least 320 × 480 pixels (full-resolution). 

Table 1 

Quality scores of SR images in Fig. 1 from human subjects, the proposed metric, rescaled PSNR, SSIM and IFC (0 for worst and 10 for 

best). Note that human subjects favor Dong11 over Glasner09 as the SR image in Fig. 1 (d) is over-sharpened (best viewed on a high- 

resolution displayer). However, the PSNR, SSIM and IFC metrics show opposite results as the image in Fig. 1 (f) is misaligned to the 

reference image by 0.5 pixel. In contrast, the proposed metric matches visual perception well. 

Bicubic BP Shan08 Glasner09 Yang10 Dong11 Yang13 Timofte13 SRCNN
Subject 5.65 6.13 4.13 4.78 5.48 6.10 6.55 6.63 6.72
Proposed 3.79 4.20 2.93 4.96 5.58 5.75 5.80 6.05 6.36
PSNR 2.52 2.61 1.59 2.23 2.68 1.16 2.82 2.83 2.83
SSIM 7.50 7.65 6.84 7.59 7.69 6.68 7.83 7.83 7.81
IFC 4.72 4.85 4.02 4.61 4.97 3.42 5.16 5.13 5.24
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methods ( Moorthy and Bovik, 2010; 2011; Saad et al., 2012; Tang

et al., 2011, 2014; Ye et al., 2012 ). We quantify SR artifacts based on

their statistical properties in both spatial and frequency domains,

and regress them to collected perceptual scores. Experimental re-

sults demonstrate the effectiveness of the proposed no-reference

metric in assessing the quality of SR images against existing IQA

measures. 

The main contributions of this work are summarized as fol-

lows. First, we propose a novel no-reference IQA metric, which

matches visual perception well, to evaluate the performance of SR

r  
lgorithms. Second, we develop a large-scale dataset of SR images

nd conduct human subject studies on these images. We make the

R dataset with collected perceptual scores publicly available at

ttps://sites.google.com/site/chaoma99/sr-metric . 

. Related work and problem context 

The problem how to evaluate the SR performance can be posed

s assessing the quality of super-resolved images. Numerous met-

ics for general image quality assessment have been used to eval-

https://sites.google.com/site/chaoma99/sr-metric
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Table 2 

The scaling factors ( s ) in our experiments with 

their corresponding kernel width values ( σ ). 

s 2 3 4 5 6 8 

σ 0 .8 1 .0 1 .2 1 .6 1 .8 2 .0 
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ate SR performance in the literature. According to whether the

round-truth HR images are referred, existing metrics fall into the

ollowing three classes. 

.1. Full-reference metrics 

Full reference IQA methods such as the MSE, PSNR, and SSIM

ndices ( Wang et al., 2004 ) are widely used in the SR litera-

ure ( Dong et al., 2011; Kim and Kwon, 2010; Shan et al., 2008; Sun

t al., 2011; Yang and Yang, 2013; Yang et al., 2013; 2010 ). However,

hese measures are developed for analyzing generic image signals

nd do not match human perception (e.g., MSE) ( Girod, 1993 ).

eibman et al. (2006) conduct subject studies to examine the lim-

tations of SR performance in terms of scaling factors using a set

f three images and existing metrics. Subjects are given two SR

mages each time and asked to select the preferred one. The per-

eptual scores of the whole test SR images are analyzed with the

radley–Terry model ( Handley, 2001 ). The results show that while

SIM performs better than others, it is still not correlated with vi-

ual perception well. In our recent SR benchmark work ( Yang et al.,

014 ), we conduct subject studies in a subset of generated SR im-

ges, and show that the IFC ( Sheikh et al., 2005 ) metric performs

ell among full-reference measures. Since subject studies are al-

ays time-consuming and expensive, Reibman et al. use only six

round-truth images to generate test SR images while we use only

0 in Yang et al. (2014) . It is therefore of great importance to con-

uct larger subject study to address the question how to effectively

valuate the performance of SR algorithms based on visual percep-

ion. 

.2. Semi-reference metric 

In addition to the issues on matching visual perception, full-

eference metrics can only be used for assessment when the

round-truth images are available. Some efforts have been made

o address this problem by using the LR input images as refer-

nces rather than the HR ground-truth ones, which do not always

xist in real-world applications. Yeganeh et al. (2012) extract two-

imension statistical features in the spatial and frequency domains

o compute assessment scores from either a test LR image or a

enerated SR image. However, only 8 images and 4 SR algorithms

re analyzed in their work. Our experiments with a larger num-

er of test images and SR algorithms show that this method is less

ffective due to the lack of holistic statistical features. 

.3. No-reference metrics 

When the ground-truth images are not available, SR images

an be evaluated by the no-reference IQA methods ( Moorthy and

ovik, 2010; 2011; Saad et al., 2012; Tang et al., 2011 ) based

n the hypothesis that natural images possess certain statistical

roperties, which are altered in the presence of distortions (e.g.,

oise) and this alternation can be quantified for quality assess-

ent. In Ye et al. (2012) and Tang et al. (2014) , features learned

rom auxiliary datasets are used to quantify the natural image

egradations as alternatives of statistical properties. Existing no-

eference IQA methods are all learning-based, but the training im-

ges are degraded by noise, compression or fast fading rather than

uper-resolution. As a result, the state-of-the-art no-reference IQA

ethods are less effective accounting for the artifacts such as in-

orrect high-frequency details introduced by SR algorithms. On the

ther hand, since SR images usually contain blur and ringing arti-

acts, the proposed algorithm bears some resemblance to existing

etrics for blur and sharpness estimation ( Cho et al., 2010; Ferzli

nd Karam, 2009; Liu et al., 2013 ). While the most significant dif-

erence lies in that we focus on SR images, where numerous arti-
acts are introduced by more than one blur kernel. In this work, we

ropose a novel no-reference metric for SR image quality assess-

ent by learning from perceptual scores based on subject studies

nvolving a large number of SR images and algorithms. 

. Human subject studies 

We use the Berkeley segmentation dataset ( Martin et al., 2001 )

o carry out the experiments as the images are diverse and widely

sed for SR evaluation ( Glasner et al., 2009; Sun et al., 2011; Yang

nd Yang, 2013 ). For an HR source image I h , let s be a scaling factor,

nd the width and height of I h be s × n and s × m . We generate a

ownsampled LR image I l as follows: 

 l (u, v ) = 

∑ 

x,y 

k (x − su, y − s v ) I h (x, y ) , (1)

here u ∈ { 1 , . . . , n } and v ∈ { 1 , . . . , m } are indices of I l , and k is

 matrix of Gaussian kernel weight determined by a parameter

, e.g., k (�x, �y ) = 

1 
Z e 

−(�x 2 +�y 2 ) / 2 σ 2 
, where Z is a normalization

erm. Compared to our benchmark work ( Yang et al., 2014 ), we re-

ove the noise term from (1) to reduce uncertainty. The quality of

he super-resolved images from those LR images are used to eval-

ate the SR performance. In this work, we select 30 ground truth

mages from the BSD200 dataset ( Martin et al., 2001 ) according

o the PSNR values. In order to obtain a representative image set

hat covers a wide range of high-frequency details, we compute

he PSNR values as the quality scores of the SR images generated

rom the LR images using (1) with a scaling factor ( s ) of 2 and a

aussian kernel width ( σ ) of 0.8 by the bicubic interpolation algo-

ithm. The selected 30 images are evenly divided into three sets as

hown in Fig. 2 . 

The LR image formation of (1) can be viewed as a combination

f a downsampling and a blurring operation which is determined

y the scaling factor s and kernel width σ , respectively. As sub-

ect studies are time-consuming and expensive, our current work

ocuses on large differences caused by scaling factors, which are

ritical to the quality assessment of SR images. We focus on how

o effectively quantify the upper bound of SR performance based

n human perception. Similar to Yang et al. (2014) , we assume the

ernel width is known, and compute the mean PSNR values of the

R images generated by 9 SR methods under various settings ( s ∈
2, 3, 4, 5, 6, 8} and σ ∈ { 0 . 4 , 0 . 6 , . . . , 2 } ) using 30 ground truth

mages. Fig. 3 shows that the larger subsampling factor requires

arger blur kernel width for better performance. We thus select an

ptimal σ for each scaling factor ( s ) as shown in Table 2 . 

In the subject studies, we use absolute rating scores rather

han pairwise comparison scores as we have 1620 test images,

hich would require millions of pairwise comparisons (i.e., C 1620 
2 

≈
 . 3 M ). Although the sampling strategy ( Ye and Doermann, 2014 )

ould alleviate this burden partially, pairwise comparison is in-

easible given the number of subjects, images and time con-

traints. We note that subject studies in Sheikh et al. (2006) and

ang et al. (2014) are also based on absolute rating. In this work,

e develop a user interface (See Fig. 4 ) to collect perceptual scores

or these SR images. At each time, we simultaneously show 9 im-

ges generated from one LR image by different SR algorithms on

 high-resolution display. These images are displayed in random

rder to reduce bias caused by correlation of image contents. Sub-

ects are asked to give scores from 0 to 10 to indicate image quality
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Fig. 2. Ranked PSNR values on the BSD200 dataset and the evenly selected three sets of images. The PSNR values indicate the quality scores of the SR images generated 

from the LR images using (1) with scaling factor ( s ) of 2 and Gaussian kernel width ( σ ) of 0.8 by the bicubic interpolation algorithm. 
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Fig. 3. Distribution of mean PSNR on the selected images. Note the increasing trend of the kernel width along the increase of the scale factor to generate the peak PSNR 

values. The SR algorithm Dong11 does not converge when σ < 0.8. The vertical dash line highlights the optimal kernel width for each scaling factor. 

Table 3 

Empirical quality scores on SR images generated by bicubic inter- 

polation. GT indicates the ground-truth HR images. 

s GT 2 3 4 5 6 8 

Score ( ≈ ) 10 8–9 5–7 4–6 3–5 2–4 < 2 
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based on visual preference. We divide the whole test into 3 sec-

tions evenly such that subjects can take a break after each section

and keep high attention span in our studies. To reduce the incon-

sistency among the individual quality criterion, we design a train-

ing process to conduct the test at the beginning of each section,

i.e., giving subjects an overview of all the ground-truth and SR im-

ages generated by bicubic interpolation with the referred scale of

quality scores as shown in Table 3 . 

We collect 50 scores from 50 subjects for each image, and com-

pute the perceptual quality index as the mean of the median 40

scores to remove outliers. To the best of our knowledge, our sub-

ject study is the largest so far in terms of SR images, algorithms,

and subject scores (See Table 4 ). In addition to using more images

than Yang et al. (2014) , we present subjects color SR images for
valuation as we observe that monochrome SR images introduce

arger individual bias as demonstrated in Fig. 5 (a). It is reasonable

hat gray-scale images are rear in daily life and subjects hold dif-

erent quality criterion. Fig. 5 (b) shows that the mean perceptual

cores are more stable after removing outliers. 

Fig. 6 shows the computed mean perceptual quality indices in

erms of scaling factor and kernel width. From the human sub-

ect studies, we have the following observations. First, the perfor-

ance rank of 9 SR algorithms remains the same (i.e., the curves

re similar) across all images in Fig. 6 (a)–(f), which shows consis-

ency of perceptual scores on evaluating SR algorithms. Second, the

erformance rank changes with scaling factors, e.g., Glasner09 out-

erforms Bicubic with higher perceptual scores in Fig. 6 (a) while

t is the opposite in Fig. 6 (c). Since the image quality degrada-

ion caused by scaling factors is larger than that by different SR

ethods, the statistical properties for quantifying SR artifacts have

o be discriminative to both scaling variations and SR algorithms.

hird, SR results generated from LR images with more smooth con-

ents have higher perceptual scores, e.g., the score of the image in

ig. 7 (a) is higher than that of Fig. 7 (b). This may be explained

y the fact that visual perception is sensitive to edges and tex-
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Fig. 4. One screenshot of human subject study. Subjects assign scores between 0 and 10 to displayed SR images. Test images are randomly presented in order to reduce bias 

caused by similarity of image contents. 

Table 4 

Data sets used for image quality assessment based on subject studies. 

Dataset # Reference images # Distortions # Subject scores 

LIVE ( Sheikh et al., 2006 ) 29 982 22 ,457 

ASQA ( Ye and Doermann, 2014 ) 20 120 35 ,700 

SRAB ( Yang et al., 2014 ) 10 540 16 ,200 

Our study 30 1620 81 ,0 0 0 
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ures and most algorithms do not perform well for images such as

ig. 7 (b). 

. Proposed algorithm 

We exploit three types of statistical properties as features, in-

luding local and global frequency variations and spatial discon-

inuity, to quantify artifacts and assess the quality of SR images.

ach set of statistical features is computed on a pyramid to allevi-

te the scale sensitivity of SR artifacts. Fig. 8 shows the main steps
f the proposed algorithm for learning no-reference quality metric.

ig. 9 shows an overview of the statistical properties of each type

f features. 

.1. Local frequency features 

The statistics of coefficients from the discrete cosine transform

DCT) have been shown to effectively quantify the degree and type

f image degradation ( Srivastava et al., 2003 ), and used for nat-

ral image quality assessment ( Saad et al., 2012 ). Since SR im-
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Fig. 6. Perceptual scores of SR images under 6 pairs of scaling factor ( s ) and kernel width ( σ ). The performance rank of SR algorithms remains relatively consistent, even 

while score values change under different scaling factors and kernel widths. The average perceptual scores of each SR algorithm are shown in the legend (Shan08 with s = 3 , 

σ = 1 . 0 is excluded as the SR images contain severe noise and their perceptual scores are close to 0). 
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Fig. 7. The scores in Fig. 6 indicated by vertical dash lines for the SR images generated from (a) are much higher than that of (b). 
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Fig. 8. Main steps of the proposed no-reference metric. For each input SR image, statistics computed from the spatial and frequency domains are used as features to 

represent SR images. Each set of extracted features are trained in separate ensemble regression trees, and a linear regression model is used to predict a quality score by 

learning from a large number of visual perceptual scores. 
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Fig. 9. (a) Estimated GGD distribution of the normalized DCT coefficient in the first block of the images from Fig. 1 . Note that the shape parameter γ effectively characterizes 

the distribution difference between SR algorithms ( μ is disregarded). (b) Wavelet coefficient distribution in one subband. The GSM makes the distribution of subband more 

Gaussian-like (blue). (c) Distribution of patch singular values of SR images in Fig. 1 . For SR images generated by Bicubic and BP containing more edge blur (smoothness), 

their singular values fall off more rapidly. In contrast, Glasner09 strengthens the sharpness and the singular values of its generated SR image decrease more slowly. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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positions in the current band, 5 locations in the neighboring band and 1 from the parent band. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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ges are generated from LR inputs, the task can be considered as a

estoration of high-frequency components on LR images. To quan-

ify the high-frequency artifacts introduced by SR restoration, we

ropose to transform SR images into the DCT domain and fit the

CT coefficients by the generalized Gaussian distribution (GGD) as

n Saad et al. (2012) . 

f (x | μ, γ ) = 

1 

2�(1 + γ −1 ) 
e −(| x −μ| γ ) , (2)

here μ is the mean of the random variable x, γ is the shape pa-

ameter and �( ·) is the gamma function, e.g., �(z) = 

∫ ∞ 

0 t z−1 e −t dt .

e observe that the shape factor γ is more discriminative than

he mean value μ to characterize the distribution of DCT coeffi-

ients (See Fig. 9 (a)). We thus select the value of γ as one statisti-

al feature to describe SR images. Let σ be the standard deviation

f a DCT block, we use σ̄ = 

σ
μ to describe the perturbation within

ne block. We further group DCT coefficients of each block into

hree sets (See Fig. 10 (a)) and compute the normalized deviation

¯ i ( i = 1 , 2 , 3 ) of each set and their variation � of { ̄σi } as features.

s all the statistics are computed on individual blocks, large bias is

ikely to be introduced if these measures are simply concatenated.

e thus pool those block statistics and use the mean values to

epresent each SR image. To increase their discriminative strength,

e add the first and last 10% pooled variations as features. 

.2. Global frequency features 

The global distribution of the wavelet coefficients of one SR im-

ge might not be fitted well by a specific distribution (e.g., GGD).

e sort to the Gaussian scale mixture (GSM) model, which shows
ffective in describing the marginal and joint statistics of natu-

al images ( Moorthy and Bovik, 2011; Wainwright and Simoncelli,

0 0 0 ) using a set of neighboring wavelet bands. An N -dimensional

andom vector Y belongs to a GSM if Y ≡ z · U , where ≡ denotes

quality in probability distribution, and U is a zero-mean Gaussian

andom vector with covariance Q . The variable z is a non-negative

ixing multiplier. The density of Y is given by an integral as 

p Y (y ) = 

∫ 
1 

(2 π) N/ 2 | z 2 Q| 1 / 2 e 
(
− Y T Q −1 Y 

2 z 2 

)
p z (z) dz, (3)

here p z ( ·) is the probability of the mixing variable z . We first ap-

ly the steerable pyramid decomposition ( Simoncelli et al., 1992 )

n an SR image to generate neighboring wavelet coefficients. Com-

ared to Wainwright and Simoncelli (20 0 0) and Moorthy and

ovik (2011) , we apply the decomposition in both the real and

maginary domains rather than only in the real domain. We ob-

erve that the wavelet coefficients in the complex domain have

etter discriminative strength. As shown in Fig. 10 (b), we assume

hat N (e.g., N = 15 ) filters in neighborhoods that share a mixer es-

imated by ˆ z = 

√ 

Y T Q 

−1 Y/N . Such estimation is identical to divisive

ormalization ( Moorthy and Bovik, 2011; Wang et al., 2004 ) and

akes the probability distribution of wavelet band more Gaussian-

ike (See Fig. 9 (b)). Let d θα be the normalized wavelet subband with

cale α and orientation θ . We estimate the shape parameter γ us-

ng (2) on d θα and concatenated bands d θ across scales. In addition,

e compute the structural correlation ( Moorthy and Bovik, 2011;

ang et al., 2004 ) between high-pass response and their band-

ass counterparts to measure the global SR artifacts. Specifically,

he band-pass and high-pass responses are filtered across-scale by

 15 × 15 Gaussian window with kernel width σ = 1 . 5 . The struc-
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Fig. 11. Root-mean-square error between the estimated score and the subjective score (measures with smaller values are closer to human visual perception) using 3 valida- 

tion schemes. Note that the proposed two-stage regression model (orange bar) on three types of low-level features (blue bar) reduces the error between perceptual scores 

significantly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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tural correlation is computed by ρ = 

2 σxy + c 0 
σ 2 

x + σ 2 
y + c 0 

, where σ xy is the

cross-covariance between the windowed regions; σ x as well as σ y 

are their windowed variances; and c 0 is a constant for stabilization.

4.3. Spatial features 

Since the spatial discontinuity of pixel intensity is closely

related to perceptual scores for SR images in subject stud-

ies (See Fig. 6 ), we model this property in a way similar

to Yeganeh et al. (2012) . We extract features from patches rather

than pixels to increase discriminative strength. We apply principal

component analysis (PCA) on patches and use the corresponding

singular values to describe the spatial discontinuity. 
Singular values of images with smooth contents are squeezed to

ero more rapidly than for those with sharp contents (as they cor-

espond to less significant eigenvectors). Fig. 9 (c) shows the singu-

ar values of SR images generated from Bicubic and BP fall off more

apidly as the generated contents tend to be smooth. 

.4. Two-stage regression model 

We model the features of local frequency, global frequency

nd spatial discontinuity with three independent regression

orests ( Breiman, 2001; Criminisi et al., 2011 ). Their outputs are

inearly regressed on perceptual scores to predict the quality of

valuated SR images. Let x n ( n = 1 , 2 , 3 ) denote one type of low-

evel features, and y be the perceptual scores of SR images. The

 th node of the t th decision tree ( t = 1 , 2 , . . . , T ) in the forest is
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Fig. 12. Quality indices generated by different methods to perceptual scores. The proposed metric and other no-reference baseline methods (except DIVINE and BIQI) are 

leaned under 5-fold cross validation. A metric matches visual perception well if the distribution is compact and spreads out along the diagonal. 

l

θ

w  

t

I  

w  

b  

r  

r  

f  

o

y  
earned as: 

n ∗
j = argmax θn 

j 
∈T j I 

n 
j , (4) 

here T j controls the size of a random subset of training data to

rain node j . The objective function I n 
j 

is defined as: 

 

n 
j = 

∑ 

x n ∈S j 
log (| �y (x n ) | ) −

∑ 

i ∈{ L,R } 

( ∑ 

x n ∈S i j 

log (| �y (x n ) | ) 
)

(5)
ith �y the conditional covariance matrix computed from proba-

ilistic linear fitting, where S j denotes the set of training data ar-

iving at node j , and S L 
j 
, S R 

j 
the left and right split sets. We refer

eaders to Criminisi et al. (2011) for more details about regression

orest. The predicted score ˆ y n is thus computed by averaging the

utputs of T regression trees as: 

ˆ 
 n = 

1 

T 

T ∑ 

t 

p t (x n | �) . (6)
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Fig. 13. Quality indices generated by different methods to perceptual scores. (a) and (b): Proposed metric under leave-image-out and leave-method-out validation schemes. 

(c)–(f): Original baseline no-reference algorithms without retraining on our SR dataset. The proposed metric under two challenging validations still performs well against 

state-of-the-art metrics. A metric matches visual perception well if the distribution is compact and spread out along the diagonal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

List of features used in this work. 

Feature domain Feature description # 

Local frequency γ (mean, first 10% percentile) 6 

σ̄ (mean, last 10% percentile) 6 

� (mean, last 10% percentile) 6 

Global frequency γ for each band d θα and d θ 18 

Across-scale correlation 12 

Across-band correlation 15 

Spatial discontinuity Singular values of patches 75 

Total 138 

5
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Consequently, we linearly regress the outputs from all three types

of features to perceptual scores, and estimate the final quality

score as ˆ y = 

∑ 

n λn · ˆ y n , where the weight λ is learned by mini-

mizing 

λ∗ = argmin λ( 
∑ 

n 

λn · ˆ y n − y ) 2 . (7)

5. Experimental validation 

In the human subject studies, we generate 1620 SR images from

180 LR inputs using 9 different SR algorithms, and collect their

perceptual scores from 50 subjects. The mean of the median 40

subject scores is used as perceptual score. We randomly split the

dataset into 5 sets, and recursively select one set for test and

the remaining for training. After this loop, we obtain the qual-

ity scores estimated by the proposed metric for all SR images.

We then compare the Spearman rank correlation coefficients be-

tween the predicted quality scores and perceptual scores. In addi-

tion to the 5-fold cross validation, we split the training and test

sets according to the reference images and SR methods to ver-

ify the generality of the proposed metric. Given that there are 30

reference images and 9 SR methods, we leave 6 reference images

or 2 methods out in each experiment. Several state-of-the-art no-

reference IQA methods and 4 most widely used full-reference met-

rics for SR images are included for experimental validation. More

results and the source code of the proposed metric can be found

at https://sites.google.com/site/chaoma99/sr-metric . 
.1. Parameter settings 

We use a three-level pyramid on 7 × 7 blocks of DCT coeffi-

ients to compute local frequency features. For steerable pyramid

avelet decomposition, we set α and θ to be 2 and 6, respectively.

he resulting 12 subbands are denoted by s θα, where α ∈ {1, 2} and

∈ {0 °, 30 °, 60 °, 90 °, 120 °, 150 °}. We set the number N of neigh-

oring filters to 15, i.e., 3 × 3 adjacent positions in the current

and, 5 adjacent locations in the neighboring band and 1 from the

arent band share a mixer (See Fig. 10 (b)). For spatial discontinu-

ty, we compute singular values on 5 × 5 patches on a three-level

yramid. We list the detailed feature information in Table 5 . We

ary the parameter T of regression trees from 100 to 5000 with a

tep of 50 and find the proposed algorithm performs best when T

s set to 20 0 0. 

https://sites.google.com/site/chaoma99/sr-metric
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Shan08 [2] Glasner09 [7] Yang13 [12] Dong11 [9]
2.68 / 2.68 4.70 / 4.70 8.65 / 8.65 5.17 / 5.18

s = 6, σ = 1.8 s = 4, σ = 1.2 s = 2, σ = 0.8 s = 4, σ = 1.2

Fig. 14. Four best cases using the proposed metric to evaluate the quality of SR images under the 5-fold cross validation. The left / right values under each image are the 

predicted score and the perceptual score respectively. 

Glasner09 [7] Shan08 [2] Shan08 [2] Yang13 [12]
0.95 / 4.95 8.15 / 5.30 0.93 / 6.85 2.55 / 4.48

s = 5, σ = 1.6 s = 2, σ = 0.8 s = 2, σ = 0.8 s = 3, σ = 1.0

Fig. 15. Four worst cases using the proposed metric to evaluate the quality of SR images under the 5-fold cross validation. The left / right values under each image are the 

predicted score and the perceptual score respectively. 

(a) 4.01 (b) 4.82/4.70/4.69/4.50 (c) 4.61 (d) 4.78
Fig. 16. Perception guided SR results (best viewed on a high-resolution displayer) with quality scores predicted by the proposed metric. (a) Input LR image ( s = 4 , σ = 1 . 8 ). 

(b) Selected best SR images with the Dong11, Yang13, Timofte13 and Yang10 methods using the proposed metric. (c) 3 × 3 grid integration. (d) Pixel-level integration. 
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.2. Quantitative validations 

We run the proposed measure 100 times in each validation and

hoose the mean values as the estimated quality scores. We com-

are the contribution of each feature type using root-mean-square

rrors (RMSEs) in Fig. 11 . 

The small overall error values, 0.87 in (a) and less than 1.4 in

b) and (c) compared to the score range (0–10), indicate the ef-
ectiveness of the proposed method by linearly combining three

ypes of statistical features. In addition, we carry out an ablation

tudy replacing the random forest regression (RFR) by the support

ector regression (SVR) on each type of features. The SVR model is

idely used in existing no-reference image quality metrics ( Mittal

t al., 2012; Moorthy and Bovik, 2010; 2011; Saad et al., 2012; Ye

t al., 2012 ). Table 6 shows that RFR is more robust to the outliers

han SVR on each type of features or a simple concatenation of
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Ground truth Input LR image Ours (6.02)

Shan08 [2] (5.72) SRCNN [6] (5.32) Yang13 [12] (5.16)

Glasner09 [7] (4.78) Timofte13 [14] (4.65) Dong11 [9] (4.61)

Fig. 17. Visual comparison of SR results. The input low resolution images are generated using (1) with s = 4 and σ = 1 . 2 . We show the best 6 results based on their quality 

scores in parentheses predicted by the proposed metric, and select the best 4 algorithms to integrate our SR results. 

Table 6 

Spearman rank correlation coefficients ( Hogg et al., 2005 ) (metric with higher coefficient matches perceptual score better). The random 

forest regression (RFR) uniformly performs better than the support vector regression (SVR) for each type of features or the concate- 

nation (-con) of three type of features. The proposed two-stage regression approach (-all) combining three types of features improves 

the accuracy for both RFR and SVR. Bold: best; underline: second best. 

Ours RFR-con RFR-DCT RFR-GSM RFR-PCA SVR-all SVR-con SRV-DCT SVR-GSM SVR-PCA 

Bicubic 0 .933 0 .922 0 .910 0 .898 0.923 0 .851 0 .772 0 .630 0 .713 0 .862 

BP 0 .966 0.962 0 .956 0 .952 0 .966 0 .881 0 .876 0 .776 0 .838 0 .889 

Shan08 0 .891 0.887 0 .830 0 .870 0 .874 0 .504 0 .373 0 .499 0 .522 0 .044 

Glasner09 0 .931 0.926 0 .911 0 .897 0 .878 0 .841 0 .717 0 .766 0 .685 0 .599 

Yang10 0.968 0 .961 0 .954 0 .948 0 .969 0 .929 0 .905 0 .874 0 .834 0 .877 

Dong11 0.954 0 .946 0 .922 0 .929 0 .960 0 .885 0 .892 0 .792 0 .883 0 .874 

Yang13 0 .958 0.955 0 .937 0 .932 0 .958 0 .898 0 .855 0 .801 0 .770 0 .874 

Timofte13 0 .930 0.928 0 .911 0 .880 0 .927 0 .883 0 .814 0 .859 0 .628 0 .839 

SRCNN 0 .949 0 .938 0 .917 0 .936 0.945 0 .866 0 .853 0 .778 0 .816 0 .843 

Overall 0 .931 0.921 0 .909 0 .913 0.921 0 .752 0 .696 0 .711 0 .616 0 .663 
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three types of features. The proposed two stage-regression model

effectively exploits three types of features and performs best. 

For fair comparisons, we generate the IQA indices from 11

state-of-the-art methods including: (1) six no-reference metrics:

BRISQUE ( Mittal et al., 2012 ), BLIINDS ( Saad et al., 2012 ), DI-

VINE ( Moorthy and Bovik, 2011 ), BIQI ( Moorthy and Bovik, 2010 ),

CORNIA ( Ye et al., 2012 ), and CNNIQA ( Kang et al., 2014 ); (2) one

semi-reference metric: NSSA ( Yeganeh et al., 2012 ); and (3) four

full-reference metrics: IFC ( Sheikh et al., 2005 ), SSIM ( Wang et al.,

2004 ), FSIM ( Zhang et al., 2011 ), and PSNR. As the no-reference

metrics are originally designed to measure image degradations,

e.g., noise, compression and fading, rather than for SR evalua-
ion, we retrain them on our SR dataset using the same valida-

ion schemes. Note that both the DIVINE and BIQI metrics apply

ntermediate steps to estimate specific types of image degrada-

ions ( Sheikh et al., 2006 ) for image quality assessment. However,

R degradation is not considered in any type of degradations in

heikh et al. (2006) . We directly regress the features generated by

IVINE and BIQI methods to the perceptual scores but this ap-

roach is not effective as the quality scores for different SR im-

ges are almost the same. We thus report the original results using

he DIVINE and BIQI indices without retraining on our dataset. We

mpirically tune the parameters to obtain best performance during

etraining. The NSSA metric is designed for evaluating SR images.
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Ground truth Input LR image Ours (5.81)

Shan08 [2] (5.48) Yang10 [8] (5.35) Glasner09 [7] (5.02)

Ground truth Input LR image Ours (5.81)

Shan08 [2] (5.48) Yang1YY 0 [8] (5.35) Glasner09 [7] (5.02)

Timofte13 [14] (4.64) Dong11 [9] (4.63) BP [4] (4.58)

Fig. 18. Visual comparison of SR results. The input low resolution images are generated using (1) with s = 4 and σ = 1 . 2 . We show the best 6 results based on their quality 

scores in innermost parentheses predicted by the proposed metric, and select the best 4 algorithms to integrate our SR results. 
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u  
he other four full-reference metrics are widely used in SR eval-

ation although they are not designed for SR. Fig. 12 shows the

orrelation between subjective scores and IQA indices. Tables 7–9

uantitatively compares the Spearman rank correlation coefficients.

n addition, we compare the original results of BRISQUE, BLIINDS,

ORNIA, and CNNIQA in Table 10 and Fig. 13 . Without retraining on

ur SR dataset, these metrics generally perform worse. This shows

he contributions of this work by developing a large-scale SR im-

ge dataset and carrying out large-scale subject studies on these

R images. Note that we do not present the results of NSSA in

able 10 and Fig. 13 as the learned data file of the NSSA metric

s not publicly available. 

.3. Discussion 

As shown in Tables 7–9 and Fig. 12 , the proposed method per-

orms favorably against the state-of-the-art IQA methods, e.g., the

verall quantitative correlation with perceptual scores is 0.931 un-

er 5-fold cross validation. The leave-image-out and leave-method-

ut validations are more challenging since they take into account

he independence of image contents and SR algorithms. In the

eave-image-out setting, the training and test sets do not contain

R images generated from the same reference image. In the leave-

ethod-out setting, the SR images in training and test sets are

enerated by different SR algorithms. Tables 8 and 9 show that

he proposed metric performs well against existing IQA methods

n these two challenging validations. Note that the proposed metric

erforms best in the 5-fold cross validation as it learns from per-

eptual scores and favors prior information from image contents

nd SR algorithms for training. 

The six evaluated no-reference IQA metrics, BRISQUE, BLIINDS,

IVINE, BIQI, CORNIA, and CNNIQA, are not originally designed for

R. We retrain them (except DIVINE and BIQI) on our own SR

ataset. For DIVINE and BIQI, we present the reported results as
he performance of these methods by retraining on our dataset

s significantly worse. The reason is that these two metrics ap-

ly intermediate steps to quantify specific image distortions in

heikh et al. (2006) rather than SR. Table 7 shows that for most

R algorithms, the DIVINE or BIQI metrics do not match human

erception well. The retrained BRISQUE and BLIINDS metrics per-

orm well against DIVINE and BIQI. We note that some of the fea-

ures used by the BRISQUE and BLIINDS metrics are similar to the

roposed DCT and GSM features. However, both BRISQUE and BLI-

NDS metrics are learned from one support vector regression (SVR)

odel ( https://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/ ), which are less

obust to the outliers of perceptual scores than the random for-

st regression (RFR) model. Fig. 12 shows that their quality scores

catter more than close to the diagonal. The CORNIA method

earns a codebook from an auxiliary dataset ( Larson and Chan-

ler, 2010 ) containing various image distortions. The coefficients of

ensely sampled patches from a test image are computed based

n the codebook as features. Table 7 shows that the CORNIA met-

ic achieves second best results among all the baseline algorithms.

he proposed metric performs favorably against CORNIA due to the

ffective two-stage regression model based on RFRs. While COR-

IA only relies on one single SVR. The CNNIQA metric uses con-

olutional neural network to assess the image quality, however, it

oes not perform as well as the proposed method. The can be ex-

lained by insufficient amount of training examples. Overall, the

roposed method exploits both global and local statistical features

pecifically designed to account for SR artifacts. Equipped with a

ovel two-stage regression model, i.e., three independent random

orests are regressed on extracted three types of features and their

utputs are linearly regressed with perceptual scores, our metric

s more robust to outliers than the compared IQA methods, which

re based on one single regression model (e.g., SVR or CNN). 

Although the semi-reference NSSA method is designed for eval-

ating SR images and extracts both frequency and spatial features,

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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t does not perform well as shown in Fig. 12 and Tables 7–9 . This is

ecause the features used in the NSSA method are two-dimension

oefficients and their regressor is based on a simple linear model.

he quality indices computed by weight-averaging two coefficients

re less effective for evaluating the quality of SR images generated

y the state-of-the-art SR methods. 

For the cases when ground truth HR images are available, the

roposed method performs favorably against four widely used full-

eference quality metrics including PSNR, SSIM ( Wang et al., 2004 ),

FC ( Sheikh et al., 2005 ), and FSIM ( Zhang et al., 2011 ). The PSNR

etric performs poorly since the pixel-wise difference measure-

ent does not effectively account for the difference in visual per-

eption (See Table 7 and Fig. 12 ). For example, an SR image with

light misalignment from the ground truth data appears similarly

n terms of visual perception, but the PSNR value decreases signif-

cantly. The SSIM method performs better than PSNR as it aims to

imic human vision and computes perceptual similarity between

R and ground truth images by using patches instead of pixels.

owever, the SSIM metric favors the false sharpness on the SR

mages generated by Shan08 and Glasner09 and overestimates the

orresponding quality scores as shown in Fig. 12 . The FSIM metric

s less effective in evaluating the SR performance either. The IFC

ethod is also designed to match visual perception and generally

erforms well for SR images ( Yang et al., 2014 ). Nonetheless, its in-

ices are less accurate for some SR images ( Fig. 12 ). This can be ex-

lained by the fact that the IFC metric is limited by local frequency

eatures. In other words, the IFC metric does not take global fre-

uency and spatial properties into account, and fails to distinguish

hem. Thus it may underestimate the quality of SR images (See the

ots cluster below the diagonal in the last sub figure of Fig. 12 ). 

We present four best and worse cases using our metric with 5-

old cross validation to predict the quality of SR images in Fig. 14

nd Fig. 15 . The reasons that cause the worst cases in Fig. 15 can

e explained by several factors. For the first, third and fourth SR

mages, the proposed metric gives low quality scores due to the

act that human subjects do not always favor oversharp SR images

see also the discussion in Table 1 in the manuscript). For the sec-

nd image, the richer high-frequency contents affect the proposed

etric to compute the high score. 

Overall, the proposed metric performs favorably against the

tate-of-the-art methods, which can be attributed to two reasons.

irst, the proposed metric uses three sets of discriminative low-

evel features from the spatial and frequency domains to describe

R images. Second, an effective two-stage regression model is more

obust to outliers for learning from perceptual scores collected in

ur large-scale subject studies. In contrast, existing methods nei-

her learn from perceptual scores nor design effective f eatures with

ocus on representing SR images. The proposed metric is imple-

ented in Matlab on a machine with an Intel i5-4590 3.30 GHz

PU and 32GB RAM. We report the average run time (in seconds)

s follows, ours: 13.31, BRISQUE: 0.14, BLIINDS: 23.57, DIVINE: 9.51,

IQI: 1.21, CORNIA: 3.02, CNNIQA: 12.68, NSSA: 0.28, IFC: 0.61,

SIM: 0.13, FSIM: 0.18, and PSNR: 0.02. 

. Perception guided super-resolution 

Given an LR input image, we can apply different SR algorithms

o reconstruct HR images and use the proposed metric to automat-

cally select the best result. Fig. 1 shows such an example where

he SR image generated by the Timofte13 method has the highest

uality score using the proposed metric (See Fig. 1 (i)) and is thus

elected as the HR restoration output. Equipped with the proposed

etric, we can also select the best local regions from multiple SR

mages and integrate them into a new SR image. Given a test LR

mage, we apply aforementioned 9 SR algorithms to generate 9 SR

mages. We first divide each of them into a 3 × 3 grid of regions.
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Table 8 

Spearman rank correlation coefficients ( Hogg et al., 2005 ) (metric with higher coefficient matches perceptual score better). The com- 

pared metrics are retrained on our SR dataset under the leave-image-out validation. Bold: best; underline: second best. 

Ours BRISQUE BLIINDS CORNIA CNNIQA NSSA 

( Mittal et al., 2012 ) ( Saad et al., 2012 ) ( Ye et al., 2012 ) ( Kang et al., 2014 ) ( Yeganeh et al., 2012 ) 

Bicubic 0 .805 0 .423 0 .522 0.761 0 .736 0 .093 

BP 0 .893 0 .539 0 .476 0.873 0 .853 −0 .046 

Shan08 0.800 0 .442 0 .474 0 .832 0 .742 0 .048 

Glasner09 0 .867 0 .277 0 .399 0.859 0 .803 0 .023 

Yang10 0 .904 0 .625 0 .442 0 .843 0.867 0 .012 

Dong11 0 .875 0 .527 0 .411 0 .819 0.849 −0 .101 

Yang13 0 .885 0 .575 0 .290 0.843 0 .841 0 .108 

Timofte13 0.815 0 .500 0 .406 0 .828 0 .740 −0 .035 

SRCNN 0 .904 0 .563 0 .383 0 .827 0.850 0 .042 

Overall 0 .852 0 .505 0 .432 0.843 0 .799 0 .017 

Table 9 

Spearman rank correlation coefficients ( Hogg et al., 2005 ) (metric with higher coefficient matches perceptual score better). The com- 

pared metrics are retrained on our SR dataset under the leave-method-out validation. Bold: best; underline: second best. 

Ours BRISQUE BLIINDS CORNIA CNNIQA NSSA 

( Mittal et al., 2012 ) ( Saad et al., 2012 ) ( Ye et al., 2012 ) ( Kang et al., 2014 ) ( Yeganeh et al., 2012 ) 

Bicubic 0.932 0 .850 0 .929 0 .893 0 .941 0 .036 

BP 0.967 0 .934 0 .953 0 .938 0 .971 0 .021 

Shan08 0 .803 0 .534 0 .471 0.799 0 .767 -0 .087 

Glasner09 0 .913 0 .677 0 .805 0 .817 0.883 0 .393 

Yang10 0 .965 0 .834 0 .895 0 .914 0.930 -0 .054 

Dong11 0 .932 0 .774 0 .780 0 .917 0.920 -0 .062 

Yang13 0 .944 0 .716 0 .845 0.911 0 .906 0 .147 

Timofte13 0 .774 0 .760 0.849 0 .898 0 .845 0 .382 

SRCNN 0 .933 0 .771 0 .806 0.908 0 .890 0 .149 

Overall 0 .848 0 .644 0 .763 0.809 0 .797 0 .053 

Table 10 

Spearman rank correlation coefficients ( Hogg et al., 2005 ) (metric with higher coefficient matches perceptual score better). The compared 

no-reference metrics are not retrained on our SR dataset. Bold: best; underline: second best. 

Ours Ours Ours BRISQUE BLIINDS CORNIA CNNIQA 

5-fold CV image-out method-out Mittal et al. (2012) ( Saad et al., 2012 ) ( Ye et al., 2012 ) ( Kang et al., 2014 ) 

Bicubic 0 .933 0 .805 0.932 0 .850 0 .929 0 .893 0 .927 

BP 0.966 0 .893 0 .967 0 .934 0 .953 0 .938 0 .931 

Shan08 0 .891 0 .800 0.803 0 .534 0 .471 0 .799 0 .842 

Glasner09 0 .931 0 .867 0 .913 0 .677 0 .805 0 .817 0.896 

Yang10 0 .968 0 .904 0.965 0 .834 0 .895 0 .914 0 .938 

Dong11 0 .954 0 .875 0 .932 0 .774 0 .780 0 .917 0.936 

Yang13 0 .958 0 .885 0.944 0 .716 0 .845 0 .911 0 .934 

Timofte13 0 .930 0 .815 0 .774 0 .760 0 .849 0 .898 0.906 

SRCNN 0 .949 0 .904 0 .933 0 .771 0 .806 0.908 0 .924 

Overall 0 .931 0.852 0 .848 0 .644 0 .763 0 .809 0 .833 
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e compute their quality scores based on the proposed metric and

titch the best regions to generate a new SR image (See Fig. 16 (c)).

or better integration, we densely sample overlapping patches of

1 × 11 pixels. We then apply the proposed metric on each patch

nd compute an evaluation score of each pixel of that SR image.

or each patch, we select the one from all results with highest

uality scores and stitch all the selected patches together using

he graph cut and Poisson blending ( Pérez et al., 2003 ) method

See Fig. 16 (d)). It is worth noting that the proposed metric can be

sed to select SR regions with high perceptual scores from which

 high-quality HR image is formed. Fig. 17 and Fig. 18 show two

ore pixel-level integrated SR results, which retain most edges

nd render smooth contents as well. The integrated SR results ef-

ectively exploit the merits of state-of-the-art SR algorithms, and

how better visual quality. 

. Conclusion 

In this paper, we propose a novel no-reference IQA algorithm to

ssess the visual quality of SR images by learning perceptual scores

ollected from large-scale subject studies. The proposed metric
egress three types of low-level statistical features extracted from

R images to perceptual scores. Experimental results demonstrate

hat the proposed metric performs favorably against state-of-the-

rt quality assessment methods for SR performance evaluation. 
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