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Abstract. Recent studies have shown significant advance for multi-
domain image-to-image translation, and generative adversarial networks
(GANs) are widely used to address this problem. However, existing meth-
ods all require a large number of domain-labeled images to train an ef-
fective image generator, but it may take time and e↵ort to collect a
large number of labeled data for real-world problems. In this paper, we
propose SemiStarGAN, a semi-supervised GAN network to tackle this
issue. The proposed method utilizes unlabeled images by incorporating
a novel discriminator/classifier network architecture Y model, and two
existing semi-supervised learning techniques—pseudo labeling and self-
ensembling. Experimental results on the CelebA dataset using domains
of facial attributes show that the proposed method achieves compara-
ble performance with state-of-the-art methods using considerably less
labeled training images.

Keywords: Image-to-Image Translation · Generative Adversarial Net-
work · Semi-Supervised Learning.

1 Introduction

Image-to-image translation is the study of converting an image’s representation,
e.g., its colors and tone, painting style, or objects’ attributes such as an identity’s
gender. Numerous GAN-based methods have been proposed in the literature to
address this problem [6, 23, 29, 7, 15, 25, 14, 1] because of the capability provided
by GAN architecture to generate realistic images to achieve e↵ective translation.

Existing GAN-based image translation methods are designed for various pur-
poses such as keeping consistency between source and target images [29, 7, 25]
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or sharing same semantic space [14]. But most of them take only a source and
target domain into consideration except StarGAN [1], which is the first method
designed for directly translating images from a source domain to multiple target
domains. The success of StarGAN relies on a prerequisite that a large number of
domain-labeled training images are available. Although it is a common assump-
tion for many existing GAN-based methods, it may require a high level of cost
and e↵ort to generate labels for real-world problems. Therefore, there will be a
great merit to develop a method which requires less labeled data but achieves
comparable performance.

Such a motivation has been widely adopted by many semi-supervised meth-
ods, from which we integrate two existing techniques—pseudo labeling and self-
ensembling [9]—into our method addressing the multi-domain image-to-image
translation problem.

Furthermore, we propose a novel type of architecture of the discrimina-
tor/classifier component in a GAN framework. We name it Y model due to
its shape—a few sharing base layers plus two separated branches of layers: one
for the discriminator and another for the classifier. Such a design is motivated
by an observation that a discriminator and classifier serve for di↵erent purposes,
so that they are likely to be better optimized if they have individual branches of
layers. However, because low-level image features extracted by CNNs are highly
similar such as edges, corners and spots, we retain a few common low-level layers
to reduce the total number of weights and increase the stability of the training
process.

We evaluate the proposed method using the CelebA dataset [16] for facial
attributes synthesis and measure its performance by three metrics: Inception
accuracy, human perceptual study, and classification accuracy of the auxiliary
classifier. Our experimental results show that SemiStarGAN uses less labeled
training images and generates favorable translated images and performance com-
parable with a state-of-the-art method, StarGAN.

In short, our contributions are threefold:

• We propose a novel method, which first utilizes semi-supervised learning to
exploit unlabeled data for multi-domain image-to-image translation.

• We introduce a novel partially-splitting discriminator/classifier model, de-
signed to improve the auxiliary classifier’s accuracy and reduce the uncer-
tainty caused by unlabeled images.

• We conduct experiments on hair color translation and validate the e↵ective-
ness of the proposed method, which generates higher Inception and classi-
fication accuracy by using merely one-third labeled images of a compared
supervised method.

2 Related Work

Generative Adversarial Network. Generative adversarial networks (GANs) [4]
are capable of generating various high-quality images so that they are widely
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used to tackle assorted computer vision problems including text to image syn-
thesis [19, 27], image-to-image translation [6, 23, 29, 1], image editing [28], and
image super-resolution [10]. There are two fundamental parts contained in GANs:
a generator and discriminator. During the loops of training, the former improves
its ability to generate realistic images di�cult to distinguish, but the latter also
improves its expertise to make better judgments. As a result at the end of the
training process, an e↵ective generator is trained to work for a specific task.

GAN-based Image-to-Image Translation. Due to the e↵ectiveness of han-
dling complicated translation functions as a generator under a GAN framework,
many GAN-based image-to-image translation methods have been proposed to
generate promising results. Pix2pix [6] regulates a conditional GAN (cGAN)
by a pixel-wise L1 loss to reduce the di↵erence between a translated image
and a target image. However, the method requires many highly matched pairs
of images of both source and target domains to train its network, and it is a
challenging preparation. To free this constraint of paired training images, two
di↵erent approaches have been proposed. One of them introduces a cycle con-
sistency loss to enable direct image translation [29, 25, 7], and the other utilizes
a shared semantic space [15, 23, 14] and trains two image encoders and two de-
coders. Training images from both source and target domains are projected into
the shared semantic space by the two encoders, and then get reconstructed by
the two decoders. As the foregoing methods deal with bi-domain translation,
StartGAN is the first method designed for multi-domain translation. StartGAN
uses an auxiliary classifier to guide its generator so that it can sidestep the trou-
ble of using multiple bi-domain translation. However, all of these GAN-based
methods require a large amount of domain-labeled data, which take cost and
e↵ort to collect. Unlike those approaches mentioned above, our framework can
reduce the need of labeled data and achieve comparable performance.

We would like to point out the detailed di↵erence of the terms unsupervised
used by two existing methods [14, 29] and semi-supervised used by the proposed
method. The authors call their method unsupervised because they no longer
need to use paired training images, which means that their training data are
unsupervised on the pixel level. In contrast, the proposed method utilizes both
labeled and unlabeled images so that its learning process is semi-supervised on
the domain level.

Semi-Supervised Learning. Compared with fully supervised learning meth-
ods, semi-supervised learning (SSL) methods take advantage of unlabeled data
and show promising results in many real-world problems because it is more
feasible to collect a large number of unlabeled data than labeled ones. There
are several regularization-based and GAN-based SSL methods in the literature
highly related to the proposed method. The two methods temporal ensembling
and self-ensembling [9] are proposed to develop a robust classifier which can
work reliably against various perturbations. To validate this idea, their authors
introduce stochastic augmentations to distort their input data, and dropouts
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to enhance their classifier so that the classifier can make consistent predictions
under highly altered source data. Similarly, virtual adversarial training [17] reg-
ularizes a classifier with images added with virtual adversarial perturbations.

In order to cope with unlabeled data, many GAN-based methods have been
proposed by changing their objectives of output images or adversarial losses.
CatGAN [21] extends a binary discriminator to a multi-class classifier and re-
places a conventional GAN objective with entropy minimization of unlabeled
data. SGAN [18], ImprovedGAN [20] and BadGAN [2] add an auxiliary classi-
fier aside the discriminator. Although the classifier of these GAN- based methods
can achieve favorable classification accuracy, their generated images are blurred
and incomprehensible. To address this issue, TripleGAN [12] proposes two inde-
pendent parts—a discriminator and classifier—to prevent their conflict of learn-
ing optimized CNN weights, which also prevents the generator from generating
incomprehensible output images. In short, we adopt the techniques used by self-
ensembling into the proposed method, and inspired by SGAN and TripleGAN,
we design a novel Y model of the discriminator/classifier architecture, which
owns a few shared layers of the discriminator and auxiliary classifier but two
separated branches to reach a balance between classification accuracy and train-
ing stability.

3 Proposed Method

The proposed method, SemiStarGAN, is motivated by an existing method Star-
GAN [1] and address the issue of taking advantage of unlabeled training images.
The success of StarGAN relies on a prerequisite that abundant domain-labeled
training images are available to train its classifier to generate correct labels to
give its generator the information whether the generated images contain expected
attributes. However, it may take time and e↵ort to collect a large number of la-
beled data for real-world tasks, and two problems will come up if only limited
labeled data are available. First, its generator may create unexpected output
images such as broken or over-blurred due to incorrect data models learned from
insu�cient training examples. Second, there may be an over-fitting problem of
the auxiliary classifier because of the limited number of training examples. As
a result, the generator will wrongly translate an image to an unexpected target
domain. To address this problem, we propose a method which utilizes unlabeled
images and considerably less labeled training images to achieve comparable per-
formance. We will first introduce the notations widely used in GAN-based image-
to-image translation methods, and then explain the details of each component
contained in the proposed SemiStarGAN.

3.1 Formulation

We define the problem of multi-domain image-to-image translation as the follow-
ing. Let X be a partially labeled image set, C be the label set of X on multiple
domains, and XL be the subset of X in which every image is well labeled, x
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Fig. 1: Training of SemiStarGAN. (a) The discriminator Dsrc learns to distinguish
between real and fake images. (b) The auxiliary classifierDcls learns to correctly classify
a labeled image by generating a right domain label and we enhance the classifier’s
robustness by applying self-ensembling which uses unlabeled data. (c) We propose Y
model, a novel parameter-sharing structure between Dsrc and Dcls for stabilizing the
training process. (d) Given an image and a target domain label, the generator G learns
to generate a fake image that can fool Dsrc but still be correctly classified by Dcls.
(e) G remains the cycle consistency by translating a fake image back to the image’s
original domain and a pseudo domain label is used if the input image is unlabeled.

be an image in X, and c be the label of x if available. Given the training set
X and C, the problem is about developing an image translation function which
generates a new image y from a given x in the training set X with a parame-
ter of a target domain label c0 and the new image y will be classified as being
of the domain label c0. Multi-domain GAN-based image-to-image translation
methods contains three major components: an image generator G to generate
translated images, an image discriminator Dsrc to tell the di↵erence between
real/fake images, and an auxiliary classifier Dcls to indicate domain labels. To
use both labeled and unlabeled images to train an e↵ective image generator for
multi-domian image translation, we propose a training process as illustrated in
Fig. 1 and its architecture is shown in the supplementary material.

3.2 GAN Objectice

To make generated images realistic, we adopt the GAN objective

LGAN = Ex[Dsrc(x)]� Ex,c0 [Dsrc(G(x, c0))]� �gpEx̂[(krx̂Dsrc(x̂)k � 1)2], (1)

where c0 is a given target domain label to generate a fake image G(x, c0), �gp is a
weighting parameter to balance a gradient penalty term Ex̂[(krx̂Dsrc(x̂)k�1)2]
which increases the stability of a GAN’s training process [5]. The symbol x̂
stands for any image linearly mixed by x and G(x, c0) in their image space. The
generator G aims to minimize this objective while the discriminator Dsrc tries
to maximize it.
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Fig. 2: The proposed Y model architecture and self-ensembling components of the clas-
sifier. The discriminator Dsrc and the auxiliary classifier Dcls share a few early-stage
layers for extracting common low-level features and then split into two branches for
learning their individual high-level features. For the two stochastic augmentations re-
quired by self-ensembling, we propose to use the Gaussian noise and random horizontal
flipping. We only apply the dropouts used by self-ensembling to Dcls.

3.3 Domain Classification Loss and Self-Ensembling

The auxiliary classifier Dcls is designed to let G know whether generated images
G(x, c0) own expected attributes so that they can be correctly recognized. That
is,Dcls is utilized to optimizeG. Hence, it is essential to improve the classification
accuracy of Dcls and we design a labeled images’ classification loss

Lr
cls = Ex,c[� logDcls(c|x)], (2)

which penalizes Dcls if it wrongly predicts x’s domain label.
But for a training set containing many unlabeled images, we propose to

integrate established learning techniques to improve the classifiers robustness.
To do it, we adopt self-ensembling [9], a method generates robust prediction
results by using two stochastic augmentations to alter its input stimulus and
adding a few dropouts to enhance its classifier. The choices of the two stochastic
augmentations are made upon the input data, and we select Gaussian noise and
random horizontal flipping for our experiments conducted on facial attribute
domains, which remain consistent after either augmentation. Fig. 2 shows the
proposed auxiliary classifier and its self-ensembling components, and we define
a domain classification loss for unlabeled images

Lu
cls = Ex[kDcls(�(x, ✏))�Dcls(�(x, ✏

0))k22
+ Ex,c0 [kDcls(�(G(x, c0), ✏))�Dcls(�(G(x, c0), ✏0))k22],

(3)

where � is the stochastic augmentation function, and ✏ and ✏0 are two di↵erent
parameter settings of � for generating di↵erent augmentation. Self-ensembling
not only is applied to the unlabeled images but also to the fake images G(x, c0)
and labeled images. To make G translate images to target domains correctly, we
adopt domain classification loss for fake images

Lf
cls = Ex,c0 [� logDcls(c

0|G(x, c0))], (4)

which punishes G if its fake image G(x, c0) is not classified as the domain c0.
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3.4 Cycle Consistency and Pseudo Cycle Consistency Loss

We aim to develop a network which can not only generate realistic images con-
taining correct domain attributes, but also prevent random permutation often
occurring in large networks. Thus we adopt an approach of remaining cycle con-
sistency [29] and define a consistency loss

Ll
rec = Ex,c,c0 [kx�G(G(x, c0), c)k1], (5)

which regulates the generator G by translating a generated image G(x, c0) back
to its origin domain c and encouraging the new image G(G(x, c0), c) to be similar
with the original image x. To apply cycle consistency for unlabeled images which
do not have domain labels, we define a loss of pseudo cycle consistency

Lu
rec = Ex,c0 [kx�G(G(x, c0), Dcls(x))k1], (6)

where we utilize the auxiliary classifier Dcls to predict unlabeled data’s labels,
which are required to brought into a loss of cycle consistency. Our use of pseudo
labels is inspired by an existing method, pseudo labeling [11], but we do not
follow its approach of joining genuine and pseudo labeled images to train a
classifier. We only use pseudo labels to enable cycle consistency for unlabeled
data.

3.5 Y Model: Splitting Classifier and Discriminator.

Many existing methods design their classifiers and discriminators in a convenient
way that both classifier and discriminator share most neural network layers
except the last one. Such a type of straightforward architecture is based on
a hypothesis that a common set of image features from low- to high-level is
su�cient for both classifier and discriminator, but it remains an open question
under which situation the hypothesis works.

Based on an observation that a discriminator and auxiliary classifier serve
for di↵erent purposes, i.e. telling real/fake images and predicting domain labels,
and another observation that adopting self-ensembling must create a new sort
of network architecture, we propose a partially splitting model of the classifier
and discriminator, named Y model due to its shape similar to the letter Y, as
shown in Fig. 2.

The architecture of Y model is inspired from TripleGAN, which totally
splits its discriminator and classifier. However, since most convolutional neu-
ral networks extract similar low-level image features such as edges, corners, and
spots [26], we propose to share a few common layers in the early stage used by
both discriminator and auxiliary classifier. Beyond those common layers, either
the discriminator or auxiliary classifier owns its individual convolutional layers
for learning specific high-level features. To the best of our knowledge, no similar
architecture has been proposed in the literature to address the problem of image
translation.
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3.6 Full Objective

Finally, we make the overall objective for the generator G as

LG = LGAN + �clsLf
cls + �recLl

rec + �recLu
rec (7)

and for the discriminator Dscr and the auxiliary classifier Dcls as

LD = �LGAN + �clsLr
cls + �u

clsLu
cls (8)

where �cls, �rec, and �u
cls are weight parameters make losses balanced.

4 Experimental Validation

We conduct two experiments to validate the proposed method, and report its
performance by two sets of numerical evaluation and one human perceptual
study. The code is publicly available at GitHub3.

CelebA HAG image set. The CelebA dataset [16] is a widely used face image
dataset, which contains 202,599 face images collected from 10,177 identities with
large pose variations and background clutter. Each image in the CelebA dataset
is labeled with 40 binary attributes, among which three attributes—black hair,
blond hair and brown hair indicate hair colors, but a few images are annotated as
positive in more than one of the three attributes because the hair colors of those
images are between the three given colors. To create an unambiguous image set
in which hair colors become mutually exclusive, we extract all images from the
CelebA dataset labeled as positive for only one of the three hair color attributes,
i.e., images with multiple positive hair color attributes are excluded. We name
the image set CelebA HAG, which contains 115309 images. The letters H, A, and
G stand for hair color, age, and gender because we take two more attributes—
young and male—into account, and the statistics of the CelebA HAG image set is
shown in Table 1. Those attributes, three hair colors, two age states (young, not
young), and two genders (male, not male) are all mutually exclusive and make
up 12 domains. For a fair comparison with a state-of-the-art method StarGAN,
we generate images for experiments using its release code, which crops a central
region of 178⇥178 pixels from the original CelebA images of 178⇥218 pixels, and
then downsamples cropped images using bilinear interpolation into a smaller size
of 128⇥128 pixels.

4.1 Evaluation Metrics

We evaluate the performance of the proposed method using three metrics: In-
ception accuracy, classification accuracy, and human perceptual rating.

3 https://github.com/KevinYuimin/SemiStarGAN



SemiStarGAN 9

Table 1: Statistics of the CelebA HAG image sets used for the experimental validation
of the proposed method.

male + male -
hair color young + young - young + young - total
black 19722 4939 21104 1568 47333
blond 1026 565 22691 4478 28760
brown 9475 2664 24091 2986 39216

total 30223 8168 67886 9032 115309

Inception Accuracy. In order to fairly access the e↵ectiveness of a generator
by its translated images, we utilize a strong classifier to objectively evaluate
the saliency of the translated images [20]. We choose Inception-v3 [22] as the
classifier due to its state-of-the-art performance for object recognition. We use
its publicly released model pretrained on the ImageNet dataset [3], and refine
it using our CelebA HAG dataset. Each test image is translated to another
domain and classified by the strong classifier. The inception accuracy Accincept
is defined as the fraction of translated test images which are correctly classified
by the refined Inception-v3 network. Note that though a high Accincept value
means good translation saliency, it reveals little information about the quality
of the translated images, so that we need human perceptual studies to measure
their visual quality.

Human Perceptual Study. We carry out our human perceptual studies through
Amazon Mechanical Turk (AMT). We present each translated image to 5 dif-
ferent turkers and ask two multiple-choice questions. First, which domain does
the subject on the translated image belongs to? That is, turkers work in the
same manner as Inception-v3 to classify translated images. Second, how is the
quality of the translated image compared with its original image? and we o↵er
three choices: similar, slightly worse, and worse. Because the image quality of the
CelebA datset varies significantly, when we ask the second question, we present
not only a translated image but also its original one. To increase the reliability
of this perceptual study, we set up a criterion to hire turkers whose approve rate
and submission history exceed 90% and 30 times, and accept the result of a HIT
(human intelligence task) only if at least 3 of 5 turkers select the same choice
for both questions.

Classification Accuracy of the Auxiliary Classifier In the proposed method,
the auxiliary classifier takes an important role to guide the generator to trans-
late images with eligible saliency. To evaluate the e↵ectiveness of the proposed
auxiliary classifier, we compute the classifier’s accuracy Accaux, which is defined
as the fraction of the number of correctly classified test images divided by the
total number.
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Fig. 4: Learning curves of StarGAN and SemiStarGAN generated from the experiment
of the three hair color domains in terms of the Inception and classification accuracy
shown in the left and right subfigures respectively. SemiStarGAN successfully exploits
unlabeled images to generate translated images with higher accuracy over StarGAN
for a wide range of numbers of labeled training images.

4.2 Implementation and Training

Implementation Our generator use the same CNN architecture as [1], which
is composed of three convolutional downsampling layers, six residual blocks and
three transposed convolutional layers for upsampling. Each convolutional layer
except the last one is followed by a step of instance normalization [24]. Our
discriminator and auxiliary classifier share the first two convolution layers and
then split into two branches. Our discriminator branch, similar to StarGAN’s
discriminator, contains four convolutional layers and PatchGANs [6, 29, 1, 13],
which divides an image into several patches and discriminates between real and
fake patches. Our auxiliary classifier branch contains six convolutional layers,
three dropout layers, and one 1 ⇥ 1 convolutional layer. More details of our
network architecture is shown in the supplementary material.

Training Detail We initialize SemiStarGAN using random numbers and train
it using batches of eight labeled samples and eight unlabeled samples in 250K
iterations (20 epochs including unlabeled data). We use the Adam optimizer [8]
to train SemiStarGAN and set the optimizer’s two exponential decay rates for
the moment estimates �1 and �2 as 0.5 and 0.999 respectively.

We set the initial learning rate as 0.0001 and keep it unchanged for the first
half of iterations, and linearly reduce it to 0 for the second half. Regarding the
parameters of the proposed method, we set the classification weight �cls as 1,
gradient penalty weight �gp as 10, and reconstruction weight �rec as 10. We
use Gaussian ramp up weighting function proposed by self-ensembling to set the
classification weight for unlabeled images �u

cls as 2 for the first one-third training
iterations, and reduce it to 0 for the last one-third training images.

4.3 Experimental Results

Experiment on three domains of hair colors. In this experimental setting,
we only create three domains using the hair color attributes of our CelebA HAG
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Star Black

Semi Black

Star Brown

Semi Brown

Fig. 5: Qualitative comparison between the proposed method (Semi) and a state-of-the-
art method StarGAN (Star) over three hair color domains. (Top-left) A source image
belonging to the domain of blond hair. (Top) Proportions of labeled images over all
training images of the unit of percentage. (Left) The method and the target domain.
StarGAN needs 5% labeled images while SemiStarGAN only needs 1.2% to achieve
desirable translation saliency and quality.

image set in order to assure large numbers of samples available in all domains
to investigate the performance of the proposed method a↵ected by the numbers
of labeled training images. We randomly split the CelebA HAG image set into
training and test sets where the test set contains 5001 images (1667 images per
domain), and the training set contains the remaining 110308 images. We use
all images in the training set with their hair color labels to train the Inception-
v3-based strong classifier and reach an accuracy rate of 92.4%. We randomly
select 11031 images (3677 images per domain, 10% of all training images) to
make up a labeled training set, and use the remaining 99277 (90%) images as
the unlabeled training set. From the maximal proportion as 10%, we gradually
reduce the number but keep the three domains balanced to do a series of ex-
periments. In order to reduce the uncertainty caused by random selection, we
repeat the experiments 3 times using 3 di↵erent seed numbers (0,1,2) and re-
port their averaged Inception and classification accuracy in Fig. 4, and a set of
translated images in Fig. 5. For a fair comparison with a state-of-the-art method
StarGAN, we use its publicly released code and original setting to train its net-
work on our CelebA HAG dataset. Using the same labeled training images, the
proposed SemiStarGAN generates higher accuracy rates over StarGAN because
the SemiStarGAN takes advantage of a large number of unlabeled training im-
ages. Even only a small portion of labeled training images are used (0.3% of the
total), due to the capability of exploiting a large portion of unlabeled images
(90% of the total), the proposed method generated images with better quality



12 S.-Y. Hsu et al.

Table 2: Results of the human perceptual study of the experiment using three domains
of hair colors. The #HITs indicates the number of HITs in which at least 3 of 5 turkers
reach a consensus. When using only 1/3 amount (2.5% v.s. 7.5%) of labeled training
images used by StarGAN, the proposed SemiStarGAN method generates higher accu-
racy and better image quality evaluated by AMT turkers. Note a smaller percentage
of the two worse options means better quality.

Question 1 Question 2
Method Prop. Accuracy. #HITs Similar Slightly Worse Worse #HITs
SemiStarGAN 2.5% 64.29% 196 66.22% 21.62% 12.16% 148
StarGAN 7.5% 59.90% 197 57.82% 24.49% 17.69% 147

than StarGAN. The results of our human perception study as shown in Table 2
also indicate that the proposed method generate better image quality.

Experiment on 12 domains of hair colors, age, and gender. We take
gender and age into account to evaluate the proposed method under a large
domain number 12. We randomly select 2400 images, 200 per domain, to make up
a test image set. In order to generate multi-domain classification labels composed
by 3 fields (hair color, gender, and age), we replace the two softmax layers used
in Inception-v3 (one at the end of the main branch, and another at the end of
its auxiliary branch, more details are reported in the supplementary material)
with two sigmoid layers. We use the remaining 112909 images to train the strong
classifier and reach a classification accuracy rate of 87.7%. Since the numbers
of images belonging to the 12 domains are uneven as shown in Table 1, we
randomly select 3600 images, 300 per domain, from the training image set as
the labeled training image set, and treat the remaining 109509 images as the
unlabeled images. We repeat the experiments 3 times using 3 di↵erent seed
numbers (0,1,2) and show their averaged performance in Fig. 8 and qualitative
comparisons in Fig. 6. The proposed method generates both higher Inception
and classification accuracy rates then StarGAN.

The E↵ectiveness of the Y Model. To investigate the e↵ectiveness of the
Y model, we take two other models into consideration: the mixed model similar
to the architecture used in StarGAN, and a model whose discriminator and
classifier branches are totally separated. We name the former D/C model due
to its combined architecture and the latter II model due to its shape of two
independent branches. For a fair comparison, the three types of architecture
use the same stochastic augmentations and dropouts, and their classification
accuracy of the three hair color domains test images is shown in Fig. 9 for
every interval of 500 training iterations using 0.3% labeled training data. All of
the three models reach their accuracy plateaus before 6000 iterations, and the
proposed Y model not only generates higher accuracy but also performs more
stably than the D/C model, which shows that the partially split structure can
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Star 1200

Semi 1200

Star 2400

Semi 2400

Star 3600

Semi 3600

Fig. 6: Qualitative comparison between the proposed method (Semi) and a state-of-the-
art method StarGAN (Star) over the 12-domain problem. (Top-left) A source image be-
longing to the domain of blond young male. (Top) The changed facial attributes. (Left)
Methods and the numbers of used labeled training images. Compared with StarGAN,
SemiStarGAN generates images with better saliency in terms of expected attributes
of the target domains.For example of the target domain of black hair using the same
1200 labeled training images (the two images at the first column and first two rows),
SemiStarGAN generates obvious black hair, but StarGAN does not. For another ex-
ample of the target domain of black hair, and di↵erent gender and age using the same
3600 labeled training images (the two image at the last column and last two rows),
SemiStarGAN generates blacker hair, clearer eyes and smoother skin than StarGAN.

learn better high-level features and achieve better performance. We ascribe the
superiority of the Y model over the II model to our used GAN objective. As
mentioned in several papers presenting semi-supervised GAN methods [18, 20,
2], generated samples and an adversarial loss provided by the discriminator can
regularize the classifier and improve the robustness. To sum up, the Y model
lets the discriminator and classifier not only learn their own suitable high-level
features in the same manner of TripleGAN but also gain benefits from GAN
objectives proved e↵ective by other semi-supervised GANs.

5 Conclusion

In this paper, we present a novel method SemiStarGAN, which utilize unlabeled
data for the problem of multi-domain image-to-image translation. Experimental
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Fig. 8: Learning curves of StarGAN and SemiStarGAN of the facial attribute synthesis
experiments using 12 domains. Images of both test and labeled training sets are evenly
sampled from the 12 domains.

Fig. 9: Performance comparison of three di↵erent architecture models applicable to the
discriminator and auxiliary classifier. D/C stands for the mixed model similar to the
architecture used in StarGAN, and II stands for a model whose discriminator and
classifier branches are totally separated.

results show the method’s e↵ectiveness for facial attribute transferring. For hair
color transferring, SemiStarGAN only needs one third of the labeled data used
by StarGAN to achieve the same Inception accuracy rate.
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1 Training Tips

We empirically train the proposed method using two tips. First, we alternately
train the discriminator and generator in 6 consecutive and 1 iterations respec-
tively. Second, we use an approach named Gaussian ramp up to adjust a weight-
ing parameter �u

cls used in our self-ensembling loss Lu
cls. We set the parameter

as 0 at the beginning of the training process and gradually increase it until one-
third of the training data are used. That is, we expect that the classifier loss
primarily comes from labeled data in the early stage. Once the classifier reaches
a certain level of precision, we let unlabeled data join the training process to
reinforce the generalization ability of the classifier.

2 Network Architecture

Architecture of SemiStarGAN We show the network architecture of our
generator in Table 1, discriminator in Table 2, and auxiliary classifier in Ta-
ble 3. The conv share 1 and conv share 2 are the two layers shared by both
the discriminator and auxiliary classifier. To apply self-ensembling, we put three
dropout layers in the auxiliary classifier.

In order to match the requirement of output vector formats, we use two
di↵erent ending layers in the auxiliary classifier network in our experiments.
The ending layer is softmax in the three-domain experiment, and sigmoid in the
twelve-domain one.

Since the three-domain problem is easier, we remove the conv d 4 and conv d 6
layers from the discriminator.

Architecture of Modified Inception-v3 Inception-v3 is originally designed
for mutli-class object recognition and contains two softmax layers to generate
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Table 1: Framework of our generator G. N: number of filters, K: kernel size, S: stride

size, P: padding method, IN: instance norm.

Name Description

input 128x128 RGB image

conv downsample 1 N64, K7x7, P’Same’, S1, ReLU, IN

conv downsample 2 N128, K4x4, P’Same’, S2, ReLU, IN

conv downsample 3 N256, K4x4, P’Same’, S2, ReLU, IN

conv residual 1 Residual Block: N256, K3x3, P’Same’, S1, ReLU, IN

conv residual 2 Residual Block: N256, K3x3, P’Same’, S1, ReLU, IN

conv residual 3 Residual Block: N256, K3x3, P’Same’, S1, ReLU, IN

conv residual 4 Residual Block: N256, K3x3, P’Same’, S1, ReLU, IN

conv residual 5 Residual Block: N256, K3x3, P’Same’, S1, ReLU, IN

conv residual 6 Residual Block: N256, K3x3, P’Same’, S1, ReLU, IN

deconv upsample 1 128 filters, 4x4, pad= ’Same’, stride=2, ReLU, instance norm

deconv upsample 2 64 filters, 4x4, pad= ’Same’, stride=2, ReLU, instance norm

deconv upsample 3 3 filters, 7x7, pad= ’Same’, stride=1, tanh

Table 2: Architecture of the discriminator in the Y model. Note that both the classifier

and the discriminator share the first two layers(conv share 1 and conv share 2). N: the

number of filters, K: kernel size, S: stride size, P: padding method.

Name Description

input 128x128 RGB image

noise Additive Gaussian noise, = 0.15

conv share 1 N64, K4x4, P’Same’, S2, LReLU(=0.1)

conv share 2 N128, K4x4, P’Same’, S2, LReLU(=0.1)

conv d 3 N256, K4x4, P’Same’, S2, LReLU(=0.1)

conv d 4 N256, K4x4, P’Same’, S2, LReLU(=0.1)

conv d 5 N512, K4x4, P’Same’, S2, LReLU(=0.1)

conv d 6 N512, K4x4, P’Same’, S2, LReLU(=0.1)

conv d patch N1, K3x3, P’Same’, S1

a one-dimension output vector. To incorporate Inception-v3 into our twelve-
domain experiment which requires a three-dimension (hair color, gender, age)
output vector to describe our domain labels, we replace Inception-v3’s two soft-
max layers with sigmoid layers. We show the modified Inception-v3 architecture
in Fig. 1.
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Table 3: Architecture of our auxiliary classifier. Note that our classifier and the dis-

criminator share the first two layers (conv share 1 and conv share 2). N: number of

filters. K: kernel size, S: stride size, P: padding method, BN: batch norm, nd: number

of domains.

Name Description

input 128x128 RGB image

noise Additive Gaussian noise, = 0.15

conv share 1 N64, K4x4, P’Same’, S2, LReLU(=0.1)

conv share 2 N128, K4x4, P’Same’, S2, LReLU(=0.1)

drop1 Dropout (rate = 0.5)

conv c 3 N256, K4x4, P’Same’, S2, LReLU(=0.1), BN

conv c 4 N256, K4x4, P’Same’, S2, LReLU(=0.1), BN

drop2 Dropout (rate = 0.5)

conv c 5 N512, K4x4, P’Same’, S2, LReLU(=0.1), BN

conv c 6 N512, K4x4, P’Same’, S2, LReLU(=0.1), BN

drop3 Dropout (rate = 0.5)

conv c 7 N256, K1x1, P’Same’, S1, LReLU(=0.1), BN

conv c 8 N128, K1x1, P’Same’, S1, LReLU(=0.1), BN

pool1 Global average pool (2x2 to 1x1 pixel)

conv c logits N(nd), K1x1, P’Same’, S1

output Softmax (Sigmoid)

Fig. 1: The modified Inception-v3. Note the softmax layers are replaced by sigmoid (red

blocks).
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Star Blond

Semi Blond

Star Brown

Semi Brown

Fig. 2: Qualitative comparison between the proposed method (Semi) and a state-of-

the-art method StarGAN (Star) over three hair color domains. (Top-left) A source

image belonging to the domain of black hair. (Top) Proportions of labeled images over

all training images of the unit of percentage. (Left) The methods and their target

domains. From the top two rows of images, the proposed method generates blond hair

more obvious than the compared method using the same labeled training images under

the proportions from 0.3% to 2.5%.

Star Black

Semi Black

Star Blond

Semi Blond

Fig. 3: Qualitative comparison between the proposed method (Semi) and a state-of-

the-art method StarGAN (Star) over three hair color domains. (Top-left) A source

image belonging to the domain of brown hair. (Top) Proportions of labeled images

over all training images of the unit of percentage. (Left) The methods and their target

domains. From the top two rows of images, the proposed method generates black hair

more obvious than the compared method using the same labeled training images under

the proportions from 0.3% to 1.2%.
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Star Black

Semi Black

Star Brown

Semi Brown

Fig. 4: Qualitative comparison between the proposed method (Semi) and a state-of-the-

art method StarGAN (Star) over three hair color domains. (Top-left) A source image

belonging to the domain of blond hair. (Top) Proportions of labeled images over all

training images of the unit of percentage. (Left) The methods and their target domains.

Using the same training images, the proposed method generates not only better image

quality in terms of less artifacts, but also more obvious image attributes such as black

and brown hair on the second and fourth rows of images.



6 S.-Y. Hsu et al.

Star1200

Semi1200

Star2400

Semi2400

Star3600

Semi3600

Fig. 5: Qualitative comparison between the proposed method (Semi) and a state-of-

the-art method StarGAN (Star) over 12-domain problem. (Top-left) A source image

belonging to the domain of blond young female. (Top) The changed facial attributes.

(Left) The methods and their used numbers of labeled training images. SemiStarGAN

generates obvious black hair using 1200 labeled data but StarGAN can not generate

the same level of salience even using 3600 labeled data. While transferring gender and

age, SemiStarGAN generates clearer eyes and smoother skin than StarGAN.
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Star 1200

Semi 1200

Star 2400

Semi 2400

Star 3600

Semi 3600

Fig. 6: Qualitative comparison between the proposed method (Semi) and a state-of-the-

art method StarGAN (Star) over 12-domain problem. (Top-left) A source image be-

longing to the domain of brown hair young female. (Top) The changed facial attributes.

(Left) The methods and their used numbers of labeled training images. SemiStarGAN

generates obvious black hair and blond hair using 1200 labeled data but StarGAN

can not generate the same level of salience even using 2400 labeled data. While trans-

ferring gender and age, SemiStarGAN generates clearer eyes and smoother skin than

StarGAN.


